控制适应性免疫系统的免疫疗法已牢固确立,但调节先天免疫系统的研究仍很少。纳米颗粒和吞噬性髓样细胞之间的内在相互作用使这些材料特别适合参与先天免疫系统。然而,开发纳米疗法是一个复杂的过程。在这里,我们展示了一种模块化方法,有助于将多种药物有效地整合到纳米生物平台中。使用微流体配方策略,我们生产了基于载脂蛋白 A1 的纳米生物制剂,经体内筛选评估,具有良好的先天免疫系统参与特性。随后,雷帕霉素和三种小分子抑制剂与亲脂性前体衍生化,确保它们在纳米生物制剂中的无缝结合和有效保留。在心脏移植小鼠模型中,短期静脉注射载雷帕霉素的纳米生物制剂 (mTORi-NB) 显着延长了同种异体移植的存活率。最后,我们通过 PET/MR 成像研究了 mTORi-NB 在非人类灵长类动物中的生物分布并评估了其安全性,为临床转化铺平了道路。
肽和蛋白质分别是氨基酸的短链和长链。表达的肽和蛋白质在生物学变异中起着重要而突出的作用,包括控制代谢,调节骨骼代谢,清除自由基,改变睾丸激素水平以及对某些疾病的治疗[1-6]。令人惊讶的是,只有二十个基因编码的氨基酸是自然界中发现的肽的基础,可以将其分为两个主要类别的亲水性和疏水性氨基酸。如方案1所示,ALA,Val,Leu,Ile,Met,Phe,Phe,Tyr和TRP的非极性烃链使它们成为亲脂性,疏水性氨基酸。虽然官能团的存在,例如羟基,酰胺,吡唑,鸟苷,胺,羧酸和硫醇,导致SER,THR,THR,THR,ASN,ASN,GLU,HIS,HIS,LYS,LYS,LYS,LYS,LYS,ASP,ASP,GLU,GLU,GLU,GLU,GLU,GLY,GLY,GLY和CYS的亲水性能(方案2)。这些氨基酸的排列共同导致具有不同亲水性,疏水性或两亲性特性的肽折叠[7]。
摘要:过热会影响某些抗癌药物的溶解度或亲脂性等特性。这些与温度相关的变化可以提高药物的效率和选择性,因为它们可能会影响药物的生物利用度、通过细胞膜的扩散或活性。最近一种创建热敏分子的方法是将氟原子掺入化学结构中,因为氟可以调节某些化学性质,如结合亲和力。本文我们报道了具有长烃链和同源氟化链的 1,3,5-三氮杂-7-磷杂金刚烷 (PTA) 衍生的磷烷金衍生物的抗癌作用。此外,我们还分析了温度对细胞毒性作用的影响。所研究的金(I)复合物与 PTA 衍生的磷烷对人类结肠癌细胞(Caco-2/TC7 细胞系)表现出抗增殖作用,可能是通过抑制细胞 TrxR 导致细胞内氧化还原状态功能障碍。此外,细胞周期因 p53 的激活而改变,复合物通过线粒体去极化和随之而来的 caspase-3 激活引起细胞凋亡。此外,结果表明,高温和多氟化链的存在会增强这种细胞毒性作用。
1. 引言 GPCR(G 蛋白偶联受体)是最大的一类细胞外信号蛋白,可对由神经递质、离子、气味和其他刺激物组成的多种化学物质作出反应 [1]。大多数医学治疗靶点属于五大蛋白质家族之一,即 G 蛋白偶联受体 (GPCR)、离子通道、激酶、核激素受体和蛋白酶 [2]。G 蛋白偶联受体 (GPCR) 对各种生物功能至关重要,包括视觉、嗅觉和衰老。它们与各种人类病理生理状况(糖尿病、肥胖症、阿尔茨海默病和一些中枢神经系统疾病)有关,并且是治疗药物最重要的靶点之一 [2]。如图 1 所示,GPCR 主要根据其结构组成和相似性分为不同的家族 [3]。GPCR A 类(视紫红质样)仍然是其中最大的群体之一。事实上,GPCRs A 类靶向几乎占所有处方药的三分之一,因为它们中的大多数具有共同的激活机制 [4]。一种非常流行的寻找目标和线索的方法,其中有结构信息可用,称为基于片段的药物发现 (FBDD),用于筛选药物片段[5]。许多物理化学参数,如分子量、水溶性、可旋转键数和亲脂性值
摘要:线粒体在肿瘤发生中起着关键作用,是癌症治疗的最重要靶点之一。虽然将药物输送到线粒体的最有效方法是将它们共价连接到亲脂性阳离子,但游离药物的体内输送仍然是一个关键的瓶颈。在此,我们报告了一种针对线粒体的金属有机骨架 (MOF) 的设计,它大大提高了模型癌症药物的功效,与游离药物相比将所需剂量降低到 1% 以下,与非靶向 MOF 相比降低到 10% 左右。使用从显微镜到转录组学的整体方法评估该系统的性能。用靶向 MOF 系统处理的 MCF-7 细胞的超分辨率显微镜揭示了重要的线粒体形态变化,这些变化与孵育后 30 分钟内的细胞死亡明显相关。细胞的全转录组分析表明,使用 MOF 系统处理后,基因表达发生了广泛变化,特别是在对细胞生理学产生深远影响并与细胞死亡相关的生物过程中。我们展示了如何将 MOF 靶向线粒体代表了开发新药物输送系统的宝贵策略。■ 简介
摘要:线粒体在肿瘤发生中起着关键作用,是癌症治疗的最重要靶点之一。虽然将药物输送到线粒体的最有效方法是将它们共价连接到亲脂性阳离子,但游离药物的体内输送仍然是一个关键的瓶颈。在此,我们报告了一种针对线粒体的金属有机骨架 (MOF) 的设计,它大大提高了模型癌症药物的功效,与游离药物相比将所需剂量降低到 1% 以下,与非靶向 MOF 相比降低到 10% 左右。使用从显微镜到转录组学的整体方法评估该系统的性能。用靶向 MOF 系统处理的 MCF-7 细胞的超分辨率显微镜揭示了重要的线粒体形态变化,这些变化与孵育后 30 分钟内的细胞死亡明显相关。细胞的全转录组分析表明,使用 MOF 系统处理后,基因表达发生了广泛变化,特别是在对细胞生理学产生深远影响并与细胞死亡相关的生物过程中。我们展示了如何将 MOF 靶向线粒体代表了开发新药物输送系统的宝贵策略。■ 简介
在各种癌症治疗中,与其他癌症相比,化学疗法的侵入性明显更低。利用在纳米形成中产生高效率的药物,可以是癌症治疗的理想方法。在药物输送,现代疫苗,诊断等中使用纳米技术。是当今癌症治疗的新方面。8此外,适用的癌症治疗方法和材料尤其是药物递送的材料,例如聚合物或非聚合纳米医学,亲脂性,亲水性和金属纳米颗粒以及其他类似物质。9,10纳米技术药物的多样性和效率使其成为癌症治疗未来的高潜在治疗方法。他汀类药物家族以其抗动脉粥样硬化的影响而闻名,已显示出有希望的抗癌潜力。汀类药物因其在降低胆固醇和治疗心血管疾病中的作用而被广泛认可。它们主要是通过抑制3-羟基-3-甲基 - 谷氨酸-COA还原酶(HMGCR)(胆固醇生物合成中的关键酶)的作用。尽管汀类药物的溶解度低和生物利用度限制了其临床应用,但他汀类药物的治疗效果仍面临局限性。5,11
摘要辛伐他汀,3-羟基-3-甲基戊二酰辅酶A还原酶抑制剂,是一种主要降低脂质效应的亲脂性药物。然而,辅酶Q10的还原(COQ10)属于辛伐他汀的不良反应。我们旨在确定辛伐他汀和coq10处理对脑皮质中一氧化氮合酶(NOS)活性的影响,扎克大鼠患有代谢综合征。将十二周龄的雄性肥胖扎克大鼠分为对照组,并用辛伐他汀(15 mg/kg/day)或coq10(15 mg/kg/day)或辛伐他汀和coq10组合进行对照组。6周后,测量体重和血压。NOS活性是通过[3H] -L-精氨酸形成[3H] -L-Citrulline的。均无法降低肥胖扎克大鼠体重或血压。辛伐他汀在脑皮质或小脑中没有显着增加NOS活性。但是,COQ10在脑皮质和小脑中均显着增加了总体NOS活性。辛伐他汀和COQ10的组合将NOS活性提高到COQ10处理后达到的水平。总而言之,内源性抗氧化剂COQ10能够增加大脑中没有神经保护作用的大脑产生。
2004 年开展的 CCQM 试点研究由三部分组成:CCQM-P31a 有机溶液 - 多环芳烃 (PAH)、CCQM-P31b 有机溶液 - 多氯联苯 (PCB) 同类物和 CCQM-P31c 有机溶液 - 氯化农药。CCQM-P31c 氯化农药研究结果总结如下。在 2004 年 4 月的有机分析工作组 (OAWG) 会议和 2004 年 10 月的 OAWG 会议(北京 2004)上审查了 P31c 结果后,决定继续进行溶液中氯化农药的关键比较研究 (CCQM-K39),同时进行溶液中氯化农药的第二项试点研究 (CCQM-P31c.1)。氯化农药是人为化合物,在停止使用后多年仍会残留在环境中,特别是在亲脂性基质中。四种农药是研究的目标分析物:林丹(γ-HCH);4,4'-DDE;4,4'-DDT;和反式九氯。目标农药中有三种是之前研究的目标化合物(CCQM-K5 鱼油中的 4,4'-DDE、CCQM-P10 鱼油中的γ-HCH 和 CCQM-K21 鱼油中的 4,4'-DDT)。反式九氯被选为氯丹系列农药的代表。
使用纳米悬浮液可以提高砖粉药物和亲脂性物质的溶解度。它们的特征是无载体、纳米尺寸、100% 药物颗粒,粒径小于 1 纳米,用最少量的合适表面活性剂、聚合物或它们的组合制造而成。(7)与其他纳米悬浮液制造程序相比,湿介质研磨是一种更好的选择,因为它易于操作、价格低廉、高度可重复、高效、不含有机溶剂,并且易于扩大规模。(8)此外,在生产纳米悬浮液时,实现这些优势是当务之急。(9)另一方面,关键问题是研磨珠腐蚀可能带来污染。此外,由于研磨介质负载过重导致研磨设备重量过大,控制批量大小可能会变得复杂,而研磨时间延长也可能导致其他问题。 (10)对于湿式研磨,最重要的工艺变量是温度、研磨时间、研磨速度、介质体积和研磨尺寸。稳定剂类型、粘度、浓度和药物浓度是影响最终产品质量的典型配方特征。(11)工艺优化变得越来越重要,因为药物配方的开发通常侧重于生产出最好的最终药物,同时使用更少的能源并提高生产能力。(12)