原则上,量子化学使我们能够量化分子及其相互作用的所有电子和几何特性。因此,将预先计算的量子力学特性纳入深度学习模型可以提高其预测小分子和潜在药物重要药理特性的能力。然而,在最近一波由人工智能驱动的药物发现中,这一机会尚未得到充分利用。我们表明,通过预先训练等变图神经网络 (EGNN) 模型来预测已使用量子力学方法预先计算的原子中心部分电荷,我们可以获得更准确的模型来预测吸收、分布、代谢、排泄和毒理学 (ADMET) 特性。我们比较了量子化学预训练与非量子力学预训练以及完全没有预训练的性能,发现量子化学预训练可以生成最准确的亲脂性、血脑屏障穿透、CYP2D6 代谢和毒性模型;而对于更具挑战性的肝细胞清除率预测任务,其性能与非预训练模型非常相似。通过使用基于量子化学的预训练来预测原子级和分子级特性,我们获得了比没有预训练更丰富的分子表示,这有助于我们的模型从底层物理和化学中学习。
脂质体递送系统显着提高了化学治疗剂的功效和安全性。脂质体是由亲脂性双层组成的囊泡和hy drophilic核心,为其作为各种Thera Peutic和诊断剂的运输工具提供了绝佳的机会。阿霉素是用于评估不同脂质体应用的最具利用的化学治疗剂,因为其物理化学特性允许高药物捕获和易于远程降低预成型的脂质体。pegypated脂质体阿霉素临床批准,在市场上,doxil®例证了脂质体与聚乙烯乙二醇的表面修饰所带来的好处。这种独特的配方延长了循环中的药物停留时间,并通过被动靶向(增强的渗透性和保留效应)在肿瘤组织中的Doxo Rubicin的积累增加。但是,通过将生物活性配体偶联到脂质体表面以产生智能药物输送系统,可以进一步提高靶向肿瘤的效率。小的生物分子,例如肽,抗体和碳水化合物的一部分具有靶向恶性细胞表面上的受体的潜力。因此,已经尝试使用功能化纳米载体(用阿霉素囊形的脂质体封装)对恶性细胞进行主动靶向,并在本文中进行了综述。
摘要:近年来已经合成了许多具有潜在抗癌特性的rhenium(Re)复合物,目的是克服铂剂的临床局限性。re(i)三卡苯子复合物是最常见的,但还研究了具有较高氧化态的RE化合物,以及异质金属复合物和重载的自组装设备。这些化合物中的许多化合物表现出对恶性细胞的有希望的细胞毒性和光毒性特性,但所有RE化合物仍处于临床前研究阶段。在本综述中,我们描述了最新和有希望的rhenium化合物,重点是其潜在的作用机理,包括光毒性,DNA结合,线粒体效应,氧化应激调节或酶抑制。已经描述了许多配体,调节了亲脂性,发光特性,细胞摄取,生物分布和细胞毒性,药理和毒理学特征。基于抗癌药物也可以通过耦合到各种与生物学相关的靶向分子来使用。另一方面,与传统的细胞毒性分子(例如阿霉素)结合使用,允许将RE的靶向特性(例如朝线粒体降低)获利。通过diseleno-re-re络合物的示例,我们表明,主要目标可能是氧化状态,信号通路的下游调节,进一步的癌细胞与正常细胞的选择性细胞死亡。
我们研究了在黄铁矿 (FeS 2 ) 上生长的铁和硫氧化、极嗜热酸的古菌 Metallosphaera sedula 的代谢组。由于细胞与矿物材料之间紧密接触和相互作用,从这些微生物中提取有机物是一项重大挑战。因此,我们应用了一种改进的方案来破坏微生物细胞并将其有机成分与矿物表面分离,通过液液萃取提取亲脂性化合物,并使用 MALDI-TOF MS 和 UHPLC-UHR-Q/TOF 进行代谢组学分析。通过这种方法,我们确定了几种参与中心碳代谢和古菌中发现的改良 Entner-Doudoroff 途径的分子、硫代谢相关化合物以及参与 M. sedula 适应极端环境(如金属耐受性和耐酸性)的分子。此外,我们还确定了参与微生物相互作用的分子,即通过生物膜形成进行的细胞表面相互作用和通过群体感应进行的细胞间相互作用,这依赖于信使分子进行微生物通讯。此外,我们利用高级化合物识别软件(MetaboScape)成功提取并识别了不同的饱和噻吩醌。这些醌是 M. sedula 的呼吸链电子载体,具有在极端环境条件下进行生命检测的生物标志物潜力。
简单总结:在本研究中,我们合成了三种非极性、针对线粒体的槲皮素衍生物,并表征了它们的物理化学性质和抗癌活性。由于所有羟基都被阻断,这些化合物不能破坏脂质的过氧化;因此,高亲脂性和与脂质双层的强相互作用是影响这三种衍生物生物活性的主要因素。我们重点研究了线粒体槲皮素生物应用的新方面,这些方面以前从未研究过。新颖性基于以下内容:(a)细胞模型——六种不同的乳腺癌细胞系(不同的突变和受体状态);(b)具有阻断“氧化还原活性”基团的不同线粒体槲皮素衍生物,可用于与先前发表的具有游离儿茶酚部分的槲皮素衍生物数据进行比较分析;(c)高和低葡萄糖浓度的不同实验设置,以测量葡萄糖利用率和能量应激; (d) 线粒体槲皮素促衰老和抗衰老活性分析。我们首次展示了遗传背景(在本例中为乳腺癌细胞的突变状态)对槲皮素衍生物活性的重要性,并且我们表明线粒体槲皮素在消除具有不同突变状态的乳腺癌细胞方面比槲皮素更有效。
双凝胶是一种复杂的药物输送系统,可通过一种配方的亲水性和亲脂性输送多种药物,无论是小分子还是生物制剂。这种具有水凝胶和有机凝胶的系统结构始于 21 世纪初,当时人们认识到这些配方实际上可以通过皮肤输送药物。从那时起,它们的合成取得了真正令人印象深刻的进展。皮肤病学、伤口愈合和化妆品等新应用领域应运而生 [1,2]。随着制药和个人护理行业对更高效、用途更广的药物输送系统的需求,双凝胶的开发也呈上升趋势。这种双相特性不仅可以确保药物的控制释放,还可以确保药物的稳定性和生物利用度 [3,4]。治疗慢性皮肤病、烧伤和通过透皮给药进行全身药物输送是双凝胶目前的应用之一。它们现在已准备好融入现代药物输送系统,彻底改变人们接受局部治疗的方式,因为这将提高患者的依从性并增强治疗效果 [5, 6]。尽管双凝胶有诸多好处,但配方和稳定性仍然是挑战。相分离、活性成分的溶解度和流变性质也需要优化,以便最终产品有效。尽管存在这些挑战,但双凝胶的多功能性使研究人员和制药公司都对这一主题特别感兴趣 [7,8]。
摘要由严重的急性呼吸综合症冠状病毒-2(SARS-COV-2)引起的冠状病毒疾病19(COVID-19)的当前流行呼吁开发病毒复制抑制剂。在这里,我们对包括伊马替尼梅赛酸酯在内的已发表和声称的SARS-COV-2抗病毒药进行了生物信息学分析,我们发现,我们发现对Vero E6细胞的SARS-COV-2复制抑制了SARS-COV-2复制,并根据有关其他冠状病毒的文献来抑制其他关于其他冠状病毒的文献,这可能会以酪氨酸动物学酶为酪氨酸动物酶抗抑制剂。我们确定了具有溶酶体剂特征的SARS-COV-2抗病毒药簇,这意味着它们是能够渗透到细胞中的亲脂性弱碱基。These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotati fi n (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-speci fi c(脱靶)的效果,这意味着它们可能不对其“官方”药理学靶标作用,而是通过对包括自噬体,内体和溶酶体在内的嗜酸细胞器的非特征作用来干扰病毒复制。伊马替尼梅赛酸盐并未落入该簇。总而言之,我们根据其理化特征提出了将SARS-COV-2抗病人的初步分类与特异性(靶)与非特殊(非目标)(非目标)药物的特定分类。
摘要 大多数药物通常通过口服或静脉途径给药,以便快速起效、患者依从性更好、给药方便。然而,口服药物的生物利用度低和大脑暴露有限,对治疗神经退行性疾病和精神疾病构成了巨大挑战。因此,这种情况要求将药物靶向大脑。对于大脑靶向,需要考虑许多因素,即分子量、给药途径、药物的亲脂性和血脑屏障 (BBB)。这些因素限制了药物通过 BBB 进入脑组织。为了克服这些问题,鼻腔内给药是一种有希望的途径,它可以绕过 BBB,减少给药剂量,同时更好地让大脑接触药物。鼻腔途径已用于抗组胺药、局部止痛药和皮质类固醇的给药,旨在用于鼻过敏、鼻塞和鼻感染的局部给药。然而,最近也探索了通过这种途径进行全身给药。对于鼻腔至脑部药物输送,嗅觉和呼吸区被利用,这也使得较大的分子能够到达脑组织。这种输送系统通常依赖于 pH 或温度。某些神经系统疾病,如偏头痛、痴呆、帕金森病、癫痫和阿尔茨海默病,可以通过这种方式成功治疗。本综述试图强调鼻子的解剖结构、从鼻子到大脑的药物输送机制、输送系统配方中的关键因素、鼻腔配方以及鼻腔途径输送各种药物的应用。
Dimitrious Papahadjoupoulos 博士及其团队发现,蜗壳是由带负电荷的磷脂酰丝氨酸与钙相互作用形成的沉淀物。它们用于通过递送肽和抗原来提供疫苗。在纳米蜗壳(一种新型药物递送载体)中,目标药物分子被包裹在多层结构中,包括螺旋形薄片内的固体脂质双层。这种方法使用药物的蜗壳化来克服诸如溶解度差、渗透性和口服生物利用度差等问题。它们保护分子免受 pH、温度和酶等恶劣环境条件的影响。由于其表面和结构上同时具有亲水性和亲脂性形式,因此它可以同时包含亲水性和亲脂性药物分子。药物分子的包封负载能力由蜗壳的物理结构决定,而包封程序决定了形成的复合物的粒度。它可用于口服和全身给药生物活性物质,包括药物、DNA、蛋白质、肽和疫苗抗原。这种方法既可用于全身治疗,也可用于口服治疗,最终可能发展成为药物输送系统。这些因素将鼓励研究人员研究这一新兴的药物输送技术领域。有许多方法可以创建纳米耳蜗,然后可以使用它们来为各种应用施用不同的活性化合物。本文讨论了纳米耳蜗的组成和结构以及这些化合物的给药机制、制造技术、评估、用途和局限性。
选择性5-羟色胺再摄取抑制剂(SSRI)用于一线治疗抑郁症,并在心理药理学方面取得了重大治疗进展。治疗原则是抑制神经递质再摄取。通过阻断长5-羟色胺前再摄取泵,在体体自身受体和轴突中,它们会增加5-羟色胺效应。首先,5-羟色胺水平仅在体育区域上升。随着水平的增加,神经元脉冲电流增加,轴突末端刺激5-羟色胺释放。因此,突触裂隙中的5-羟色胺浓度增加。所有SSRI都是5-羟色胺激动剂。人脑中含有5-羟色胺的神经元在脑干和脊髓中高度局限。这些神经元将其轴突发送到大脑每个区域中含有5-羟色胺的末端。因此,脑部脑部在关键的大脑区域增加。由于这种分布,5-羟色胺神经元的功能障碍与许多疾病有关。因此,5-羟色胺活性药物可以具有许多临床作用。除了抑郁症外,SSRI还用于治疗焦虑症,疼痛障碍,恐慌症,强迫症,酒精中毒,肥胖和偏头痛。有人建议5-羟色胺还调节多巴胺 - 甲肾上腺素和GABA之间的稳态。SSRI是高亲脂性分子,并积聚在富含脂肪的组织(例如CNS细胞)中。它们主要由细胞色素P-450酶系统在肝脏中代谢。SSRI用于防止VM攻击。但是,关于VM预防的功效的数据不足。