通讯作者:Malaz Yousef (malaz@ualberta.ca) 或 Raimar Löbenberg (rloebenberg@ualberta.ca),加拿大艾伯塔省埃德蒙顿市阿尔伯塔大学卡茨集团药学与健康研究中心药学和制药科学学院,T6G 2E1 收到日期,2021 年 7 月 27 日;修订日期,2021 年 10 月 5 日;接受日期,2021 年 10 月 6 日;出版日期,2021 年 10 月 8 日 摘要——淋巴系统的结构和生理学独特性使得很难描述其在维持我们健康方面的所有贡献。然而,在过去的二十年里,人们对该系统功能重要性的理解已经发生了变化,人们更加重视它在健康和疾病中发挥的独特作用。淋巴系统与许多疾病的病理生理学有关,包括癌症、各种代谢疾病、炎症和感染。此外,研究还表明,淋巴靶向制剂可增强药物通过淋巴系统进入血液,口服时可绕过肝脏首过代谢,从而提高生物利用度,改善药代动力学和毒理学特征。设计淋巴系统制剂需要了解许多因素,其中最重要的是它们将遇到的生理环境。因此,在本综述中,我们详细介绍了淋巴系统的基本结构,然后强调了药物输送到淋巴系统的治疗和药代动力学益处。我们还详细介绍了用于淋巴系统输送的药物和制剂的标准,并概述了该领域开展的各种研究。概述和主要里程碑每天约有 20-30 升血浆通过小动脉被输送到身体组织间质空间。其中约 90% 被通过小静脉重新吸收 (1)。剩余的液体通过淋巴管排回循环系统。这些血管与其他组织和器官一起构成了淋巴系统 (1-3)。淋巴系统主要维持液体稳态,但也在将膳食脂肪和亲脂性分子和实体从肠道运输到血液中起着关键作用。此外,它还参与所有免疫过程以及许多疾病和代谢紊乱,这些疾病和代谢紊乱将在本综述后面讨论 (4-6)。1652 年,托马斯·巴托林 (Thomas Bartholin) 首次将淋巴系统一词赋予该系统 (7)。然而,最早对淋巴系统的认识可以追溯到公元前 4 世纪,由希波克拉底和亚里士多德 (8)。在接下来的几个世纪里,淋巴系统对健康的重要性在很大程度上被忽视了。直到 1622 年,
新药开发在此过程中很难耗时,涉及临床前测试,研究新药应用,临床试验和FDA批准的昂贵。脂质体和纽约人是纳米植物,已被广泛用作药物载体。这些囊泡系统中药物的包封具有多种优势,包括修饰亲脂性和亲水性,毒性降低,循环时间稳定性的增加以及药物吸收。通过使AA WICVCDTH羟基丙烷-β-螺旋可糖果蛋白DAACD络合AA构成AA的硫酸(AA)纳米含量及其衍生物的构成,并通过使用药物剂的Fischer反应来改进AA,以将二乙酯(DA)改进到二乙酯(DA)。AA AACD和DA与L-α-二硫硫酰磷脂酰胆碱/胆固醇和Tween 61/胆固醇的组成中掺入脂质体和噪声中。研究了与vincristine相比,使用MTT分析(HELA,KB和B 16 F 10)中的MTT分析,在纳米含量中使用MTT测定法。AACD与HELA,KB和B 16 F 10 AA中的AA相比,其效力最高,而比游离AA更有效,而不是Vincristine的脂质体。被捕获到双层囊泡时,DA和AACD比AA在杀死癌细胞方面更有效。AACD被夹杂在脂质体中,在HeLa细胞系中具有最高的抗增殖活性,其IC 50的效力比Vincristine和AA高。普通脂质体和新生组没有生长抑制作用。da证明了IC 50在Kb细胞系中的效力低了,而在Niosomes中的B 16 F 10 AACD中,IC 50的效力低于长文cristine。这项研究表明,通过衍生化和络合物以及双层囊泡的捕获可以增强其治疗功效。然而,与顺铂相比,使用SRB测定法在小鼠表皮细胞系(JB 6,正常细胞系)上掺入了小鼠表皮细胞系(JB 6,正常细胞系)上的纳米蛋白配方的细胞毒性。AA掺入的纳米孢子已证明在癌细胞系中具有抗增殖作用。此外,在纳米囊泡中掺入时,AA及其衍生物的安全性未显示对正常细胞系的毒性。
针对靶向前列腺特异性膜抗原(PSMA)的宠物示踪剂的需求继续增加。以批准的68个GA-和18个标记的PSMA示踪剂满足这一需求,这在主要城市中心以外挑战。这是因为这些放射性核素的短期半衰期使得有必要在其使用部位附近生产它们。为了克服这一挑战,我们提议产生61 CU的cu来标记PSMA宠物示踪剂。61 Cu可以大规模生产,其3.33小时的半衰期允许在68 GA和18 F的距离上运输。使用61 Cu和B 2-Emitter 67 Cu生产真正的溶液双胞胎。方法:PSMA-I&T(Dotaga-(l-Y)FK(sub-Kue))及其衍生物,其中Dotaga螯合剂被Nodaga(Nodaga-(l-Y)FK(Sub-Kue)取代),在这里报道了Dotaga-psma-i&tasme&taiga and nodaga&tail and nodaga&tasty and nodaga&t and nodaga&t and nodaga&t and nodaga&t。与[68 Ga] Ga-Dotaga-PSMA-I&T,[68 Ga] Ga-Nodaga-PSMA-I&T,[68 GA] GA-PSMA-11和[18 F] PSMA-1007。在LNCAP细胞和异种移植物中进行了体外(亲脂性,亲属性,细胞摄取和分布)和体内(PET/CT,生物分布和稳定性)研究。人类剂量法估计。对[61 Cu] Cu-Nodaga-PSMA-I&T进行了最初的人类成像,在转移性前列腺癌患者中进行。结果:[61 Cu] Cu-Dotaga-PSMA-I-I&T和[61 Cu] Cu-Nodaga-PSMA-I-I&T与射线纯度合成超过97%的射线纯度,明显的摩尔活性在24 MBQ/NMOL的明显摩尔活性后,没有标记后没有纯化。肿瘤吸收也更高在体外,天然Cu(Nat Cu)-Dotaga-dotaga-pSMA-I-I&T和Nat Cu-Nodaga-pSMA-I-I&T显示出高度高的pSMA(抑制浓度分别为50%,11.2 6 2.3和9.3 6 6 6 1 1.8nm),尽管低于Nat Ga-psma-nat ga-psma-n 0.4%(in Anat Ga-psma-n 0.4%)。它们的细胞摄取和分布与[68 Ga] Ga-PSMA-11的分布相当。体内,[61 cu] cu-nodaga-psma-i&t在非目标组织中的摄取量明显低于[61 cu] cu-dotaga-psma-i&t和较高的肿瘤摄取(14.0 6 5.0 6 5.0 6 5.0 6 5.0均比注入的活性(比每千iia/g]) Cu] Cu-Dotaga-PSMA-I-I&T(6.06 6 0.25%IA/G,P 5 0.0059),[68 GA] GA-PSMA-11(10.2 6 1.5%IA/G,P 5 0.0972)和[18 f] PSMA-1007(9.70 6 2.70 6 2.57%IA/G,P 5 0.00.00 HER)。
研究主题“传染病中的纳米医学:药物输送和疫苗”重点关注纳米制剂在输送候选疫苗和药物以开发针对传染病的干预方法中的作用。它包括八篇原创文章和评论文章。传染病,例如由结核分枝杆菌 (Mtb) 引起的传染病结核病 (TB),是发展中国家死亡率上升的主要原因之一。将药物输送到疾病部位是实现其治疗效果的挑战。因此,人们一直在努力使用基于脂质的纳米级药物输送系统 (NDDS) 来增强药物并使其在疾病部位可用。基于纳米载体的疗法有助于克服用于开发针对结核病的治疗干预措施的几种药物的毒性和溶解度差的问题(Rajput 等人)。多种纳米级载体及其在药物和疫苗输送中的应用,以及它们如何进化以克服与持续和目标特定输送、稳定性、耐久性、功效和生物分布相关的挑战。它们还能使药物被活性巨噬细胞吸收(Rajput 等人),而活性巨噬细胞被用作纳米载体主动和被动靶向的靶位。纳米载体与目标特定配体锚定,以持续和目标特定输送药物和抗原,从而有效输送(Limocon 等人)。这些配体锚定的纳米载体由壳聚糖制成,可局部和全身提高药物浓度,这种输送系统介导的药物输送增加了治疗结核病的潜力(Limocon 等人)。醋氯芬酸 (ACE) 是一种环氧合酶 2 抑制剂,是双氯芬酸类衍生物,用于全身炎症性自身免疫性疾病、类风湿性关节炎 (RA) 的对症治疗。部分溶解性、高亲脂性和稳定性问题对外用制剂的开发提出了挑战。因此,Garg 等人开发并表征了基于纳米结构脂质载体 (NLC) 的 ACE (ACE-NLC) 水凝胶,以实现有效的透皮给药。使用不同的脂质通过各种方法制备 NLC 微乳剂,并根据粒度、电位、表面形貌和药物包封率进行表征(Garg 等人)。将优化的 NLC 配方加入 Carbopol ® 940 凝胶中,并对该布置进行表征并与现有的市售凝胶 (Mkt-gel) 配方进行比较。体外、离体皮肤动力学建模和体内皮肤保留、渗透和稳定性证实了载有醋氯芬酸的 NLC 制剂在表皮和真皮中更好地分布皮肤的价值。这些研究结果表明,ACE-NLC 渗透到皮肤层深处,并保持皮肤
摘要 - covid-19造成了人类健康灾难。感染Covid-19的人在感染期间和之后也患有各种临床疾病。Boerhavia diffusa植物以其降压活性而闻名。ACE-II抑制剂和钙通道阻滞剂被报道为B. diffusa phytoconstitentents降压活性的机制。各种研究表明,ACE-II是病毒攻击宿主细胞的结合位点。COVID-19治疗通常采用多种合成抗病毒和甾体药物。 因此,其他临床疾病(例如高血压和高血糖)是严重的并发症。 安全有效的药物输送是药物开发过程的主要目标。 covid-19接受各种草药治疗;但是,由于其低效力,它们并未被广泛使用。 许多草药植物和制剂用于治疗19. Covid-19感染,其中B. diffusa是使用最广泛的植物。 当前的研究依赖于在B. diffusa植物中发现具有ACE-II抑制活性的活性植物构成。 因此,它可以用作COVID-19和相关疾病患者的治疗选择。 从报道的文献中选择了B. divfusa植物的不同植物成分。 已经研究了植物成分对ACE-II蛋白的活性。 分子对接和配体 - 蛋白质相互作用计算工具用于内部实验。 liriodenine具有最佳的药物,生物活性和结合评分特征。COVID-19治疗通常采用多种合成抗病毒和甾体药物。因此,其他临床疾病(例如高血压和高血糖)是严重的并发症。安全有效的药物输送是药物开发过程的主要目标。covid-19接受各种草药治疗;但是,由于其低效力,它们并未被广泛使用。许多草药植物和制剂用于治疗19. Covid-19感染,其中B. diffusa是使用最广泛的植物。当前的研究依赖于在B. diffusa植物中发现具有ACE-II抑制活性的活性植物构成。因此,它可以用作COVID-19和相关疾病患者的治疗选择。从报道的文献中选择了B. divfusa植物的不同植物成分。已经研究了植物成分对ACE-II蛋白的活性。分子对接和配体 - 蛋白质相互作用计算工具用于内部实验。liriodenine具有最佳的药物,生物活性和结合评分特征。物理化学,类似药物,水溶性,亲脂性和药代动力学参数用于评估植物成分。这项内部研究旨在找到针对ACE-II的芽孢杆菌芽孢杆菌芽孢杆菌的治疗潜力。靶向ACE-II还显示出对SARS-COV-2的影响。它可以用作设计药物的基本原理,用于感染COVID-19和相关疾病的患者。关键字 - ACE-II蛋白,COVID-19,Boerhavia diffusa,silico Inilico Molecular docking,配体 - 受体相互作用
烷基卤化物,具有卤素原子(氟,氯,溴或诱导)的化合物粘结到饱和碳原子,由于其多样性的反应性和广泛的应用,在有机化学中保持中心位置。这些化合物是有机合成中的至关重要的构件,为复杂分子的构建提供了多功能官能团。烷基卤化物的独特特性,例如它们的亲电性和离开群体的能力,使它们在各种化学转化中都可吸引。从历史上看,烷基卤化物已经通过传统方法(例如烷基化的卤代化或醇与卤代的取代反应)合成。然而,合成方法的最新进展导致开发了更高效,更可持续的途径,用于烷基卤化物制备,绿色化学原理,包括催化过程,无溶剂疾病和无溶剂经济反应,已成为烷基合成烷基烷基卤化物和微小的废物的整体成分。烷基卤化物的反应性包括各种反应,包括亲核取代,消除和自由基过程。了解这些反应的机械途径对于控制选择性和实现有机合成期望结果至关重要。最近的研究阐明了复杂的反应机制和新的新变化,扩大了烷基卤化物的合成效用。除了其合成效用之外,烷基卤化物还发现了在药物化学,材料科学和农业化学等不同领域的应用。将其掺入药物化合物中赋予了理想的特性,例如增加亲脂性或代谢稳定性。在材料科学中,烷基卤化物是合成聚合物,表面活性剂和具有量身定制特性的功能材料的前体。本综述旨在全面概述烷基卤化物的化学,涵盖其合成,反应性和应用。通过探索合成方法,机理见解和新兴应用方面的最新进展,本综述旨在阐明烷基卤化物在当代有机化学中的核心作用,并激发该动态领域中进一步的探索和创新。烷基卤化物是一类由与饱和碳原子结合的卤素原子组成的有机化合物,代表有机合成中的基本构建块,并在各个领域具有广泛的应用。烷基卤化物的化学因素由于其多种反应性模式以及其在药物化学,材料科学和工业过程中的重要性而引起了重大兴趣。合成的是,通过多种方法制备烷基卤化物,包括烷基的卤素化,醇与卤素的取代反应以及向烷烃添加卤素。合成方法的最新进展已引入了更可持续和有效的途径,以实现其合成,通常采用过渡金属催化和创新反应设计。绿色化学原理越来越多地整合到烷基卤化物的合成中,以最大程度地减少废物产生和环境影响。
2. Anothaisintawee T、Wiratkapun C、Lerdsitthichai P、Kasamesup V、Wongwaisayawan S、Srinakarin J 等。乳腺癌的风险因素:系统评价和荟萃分析。亚太公共卫生杂志2013;25(5):368-87。3. Anothaisintawee T、Leelahavarong P、Ratanapakorn T、Teerawattananon Y。使用比较有效性研究为将贝伐单抗用于治疗黄斑疾病纳入泰国药品福利计划的政策决策提供信息。Clinioecon Outcomes Res 2012;4:361-74。4. Anothaisintawee T、Teerawattananon Y、Wiratkapun C、Kasamesup V、Thakkinstian A。乳腺癌风险预测模型:模型性能的系统评价。 Breast Cancer Res Treat 2012;133(1):1-10。5. Anothaisintawee T 、Attia J、Nickel JC、Thammakraisorn S、Numthavaj P、McEvoy M 等。慢性前列腺炎/慢性盆腔痛综合征的治疗:系统评价和网络荟萃分析。JAMA 2011;305(1):78-86。6. Anothaisintawee T 、Rattanasiri S、Ingsathit A、Attia J、Thakkinstian A。慢性肾病的患病率:系统评价和荟萃分析。Clin Nephrol 2009;71(3):244-54。 7. Anothaisintawee T、Tantai N、Teerawattananon Y,“泰国女性一生一次乳腺钼靶检查的成本效用”,卫生系统研究杂志,第 7 卷,第 413-20、2556 页。8. Anothaisintawee T、Teerawattananon Y、Wiratkapun C、Srinakarin J、Woodtichartpreecha P、Hirunpat S 等。泰国女性乳腺癌风险预测模型的开发和验证:一项横断面研究。亚太癌症预防杂志:APJCP。2014;15(16):6811-7。9. Anothaisintawee T、Reutrakul S、Van Cauter E、Thakkinstian A。睡眠障碍与传统糖尿病风险因素的比较:系统评价和荟萃分析。睡眠医学评论。2015; 30: 11-24。10. Anothaisintawee, T.、Udomsubpayakul, U.、McEvoy, M.、Lerdsitthichai, P.、Attia, J. 和 Thakkinstian, A. (2016)。亲脂性和亲水性他汀类药物对泰国女性乳腺癌风险的影响:一项横断面研究。J Cancer,7(9),1163-1168。doi:10.7150/jca.14941 11. Anothaisintawee T、Lertrattananon D、Thamakaison S、Knutson KL、Thakkinstian A、Reutrakul S。糖尿病前期患者较晚的睡眠类型与较高的糖化血红蛋白有关。Chronobiology international。2017:1-10。 12. Anothaisintawee T、Lertrattananon D、Thamakaison S、Reutrakul S、Ongphiphadhanakul B、Thakkinstian A。血清尿酸对糖尿病前期患者血糖水平的直接和间接影响:中介分析。糖尿病研究杂志。2017;2017:6830671。13. Anothaisintawee T、Julienne Genuino A、Thavorncharoensap M、Youngkong S、Rattanavipapong W、Meeyai A 等人。狂犬病所有预防措施的成本效益模型研究:系统评价。疫苗。2018。14. Anothaisintawee T、Lertrattananon D、Thamakaison S、Thakkinstian A、Reutrakul S。亚洲糖尿病前期患者的晨起与晚起、睡眠时间、社交时差和体重指数之间的关系。内分泌学前沿。2018;9(435)。15. Anothaisintawee T、Julienne Genuino A、Thavorncharoensap M、Youngkong S、Rattanavipapong W、Meeyai A 等。所有狂犬病预防措施的成本效益模型研究:系统评价。疫苗。2019;37 补充 1:A146-a53。
大麻sativa及其在炎症性风湿病中的使用1.)可能的作用机理,有效物质,现有的历史背景制备大麻(HEMP)作为用户和药用植物具有千年的传统。将大麻的使用被提及大约5000年前的中药中,并在埃及,希腊,印度和中东文化中进行了描述(1)。威廉·奥肖尼斯(William O'Shaughnessy)于19日中期出版于西药世纪致力于印度大麻对健康动物和人类的影响,例如风湿病,疏水恐惧症,霍乱,破伤风和类似儿童的抗魔力(2)。化学组成和药理学效应有三种大麻的亚种:大麻sativa,大麻indica和大麻ruderis。大麻sativa是最广泛的植物,它是出于商业和药物目的而生长的(3)。确定的是104多种植物大麻素作为植物的活性物质。还包含植物萜类化合物,类黄酮,含氮化合物和其他复杂的植物分子(4)。。除了THC和CBD,大麻醇和大麻菌(CBC),大麻蛋白,Delta9-tetrahydrocantanbivarin和Cannabigerol(CBG)之外,还以进一步的phytocannabinoids进行了科学研究。thc和cbd的水 - 溶剂差,但在大多数有机溶剂中具有良好的溶解度(5)。在过去的几十年中,THC具有广泛的科学兴趣,其特征是高亲脂性高,并且在强烈血管化的组织中快速分布(6)。THC负责精神活性作用,因为它是1型(CB1)大麻素受体的部分激动剂。CB1受体代表了中枢神经系统中配体的最大结合位点,其在小脑,脑干和边缘系统中的表达(7),但也在胃肠道,巨噬细胞,肥大细胞和角质形成细胞上(8)。cbd反过来对CB1和CB2大麻素受体的亲和力非常低(CBR1和CBR2)(9)。实验研究表明,CBD可以通过各种机制激活CBR1(10.11)。CBD也是5-羟色胺-5-HT1A受体(12)和瞬态受体电位香草型1(TRPV1)受体(13)的激动剂。CBD能够通过抑制腺苷的失活来增加腺苷受体的信号效应,这表明在疼痛和炎症中可能具有治疗作用(14)。在皮肤的内源性大麻素系统(EC)发现后,在表皮角质形成细胞,黑素细胞,真皮细胞,肥大细胞,肥大细胞,汗腺,汗腺,毛囊和皮肤神经纤维(15)中发现了两个大麻素受体CBR1和CBR2。疾病似乎有助于皮肤疾病的发展(18)。这些结果表明,ECS在维持体内平衡,皮肤的障碍和神经免疫内分泌功能的调节方面起着决定性的作用(16:17)。对大麻素受体,选择性激动剂,拮抗剂和其他可以调节镜子的调节活性成分的研究以及内源性大麻素在炎症过程中的作用提供了广泛的证据,证明了EC的众多免疫调节和抗炎作用(19)。大麻在皮肤病学中的局部使用不仅可以用植物大麻素来证明。已知大麻籽油由于其高比例
附录 2 药物化学术语表 血管紧张素转换酶 (ACE) 抑制剂 一种抗高血压药物,通过抑制血管紧张素转换酶发挥作用,阻止强效血管收缩剂的合成。 乙酰胆碱 (ACh) 神经系统中的一种信使分子。在中枢神经系统中,乙酰胆碱和相关神经元形成胆碱能系统,该系统往往引起抗兴奋作用(另见胆碱能)。 ADMET 指候选药物的吸收、分布、代谢、排泄和毒理学。 激动剂 一种在受体上产生与天然信使相同反应的药物。 变构 指正常配体使用的蛋白质结合位点以外的其他蛋白质结合位点,会影响蛋白质的活性。变构抑制剂与变构结合位点结合会诱导蛋白质形状的改变,从而将正常结合位点与正常配体区分开来。拮抗剂 一种与受体结合但不激活受体的药物,从而抑制天然信使或激动剂的结合。 抗菌剂 一种可以杀死细菌细胞或抑制细菌细胞生长的天然或合成分子。 抗体 一种由人体免疫系统产生的 Y 形糖蛋白,可与外来分子上的抗原相互作用。标记要摧毁的外来分子。 抗体-药物偶联物 一种抗体,其结构与药物共价结合。 抗原 被免疫系统“识别”并与针对它的抗体相互作用的分子区域。 抗代谢物 一种对细胞正常代谢至关重要的酶的抑制剂。用于抗菌和抗癌。 β 受体阻滞剂 一种阻断或拮抗 β 肾上腺素受体的药物。用于心血管方面。 生物测定 一种测量物质对生物体影响的测定方法。生物利用度 给药后,在血浆或靶组织中可利用的药物或其他物质的比例或百分比。 生物标志物 一种生物状态指标,可以可靠地测量和评估,作为生物过程或治疗干预反应的指标。 黑框警告 药品标签上必须出现的最严重的安全警告,表示药物可能出现严重甚至危及生命的不良反应。 血脑屏障 脑血管比周围血管的孔隙率低,且有一层脂肪涂层。针对脑部的药物必须是亲脂性的才能穿过血脑屏障。 化学介导毒性 由于某种化学物质或整个化学物质类别的物理和化学性质而导致的毒性。 胆碱能受体 由乙酰胆碱激活的受体。 慢性粒细胞白血病 一种以髓系细胞过度增殖为特征的血液系统癌症。临床试验第 1 阶段 首先在 50-200 名健康志愿者中测试药物,以确定合适的剂量水平、评估其药代动力学并确定副作用。 临床试验第 2 阶段 在此阶段,在患有目标疾病的患者组(100-500 人)中测试药物,以验证其治疗效果。不同的组接受不同的剂量,通常在双盲条件下进行。 临床试验第 3 阶段 与第 II 阶段类似,但患者人数较多(1000-5000 人)。在此阶段,将证明和充分评估药物的有益效果或其他效果。 临床试验第 4 阶段 在药物获批和上市后,监测其性能是一个永无止境的过程,现在称为第 IV 阶段研究。可能会观察到新的副作用,或者通过长期统计数据揭示对特定群体(例如儿童或孕妇)的影响。如有必要,可以撤回药物。 CNS 中枢神经系统
编辑的书对植物适应非生物胁迫的最新知识进行了有关最新知识的全面更新。它深入探究了ROS和抗氧化剂的代谢,突出了它们在生理,生化和分子过程中的复杂关系。章节关注当前的气候问题以及ROS代谢如何与抗氧化剂系统相互作用以加速排毒机制。这种理解对于寻求开发耐受性作物的农业科学家至关重要,这些农作物在不断变化的环境条件下实现可持续性。非生物压力因素对农作物产量的日益威胁导致人们迫切需要了解其对植物性能的影响以及它们影响植物的机制。显然,这些压力在每个阶段对植物的生长和发育产生负面影响,而过量的ROS产生是这种负面影响的关键因素。但是,植物能够通过诱导抗氧化剂系统作为优先级来应对不利影响。已经确定了ROS的双重作用,以浓度依赖性方式对植物代谢的调节提供了证据。在高ROS产生的条件下,抗氧化剂系统在减少ROS的作用方面起着重要作用。因此,ROS产生和抗氧化剂系统与非生物应力条件交织在一起,抗氧化剂在代谢中保持稳定性,以避免由于环境干扰而破坏。此外,它涉及抗氧化剂和ROS在植物 - 微生物相互作用中的作用。这本书由菲律宾国际赖斯研究所的博士后研究员M. Iqbal R. Khan博士编辑,他发表了35篇经过同行评审的研究文章,并为各种书籍做出了贡献。纳菲斯·A·汗(Nafees A.植物抗氧化系统(AOS)通过抵消反应性物种,尤其是活性氧(ROS)来维持细胞内稳态,在维持细胞内的稳态中起着至关重要的作用。AOS由诸如谷胱甘肽 - 抗坏血酸周期,酚类化合物和亲脂性抗氧化剂(如类胡萝卜素和生育酚)组成。这些成分合作,提供了积极的还原形式的更好的保护和再生,从而使压力的植物能够在H2O2浓度与动物细胞寿命不相容的H2O2浓度下生存。文本参考了有关抗氧化剂,氧化损伤和植物中氧气剥夺应激等主题的各种科学研究和文章。提到了特定机制,例如水 - 水周期和ASC-GSH循环,这些机制有助于植物应对压力。文本还讨论了重金属如何在植物中诱导活性氧(ROS),从而导致植物毒性和物理化学变化。它突出了各种酶和非酶,这些酶有助于植物适应压力条件。作者特别关注基因表达和技术用于研究植物防御的技术。The references cited include studies on various topics, such as: * Antioxidant machinery in crop plants * Phytotoxicity and physicochemical changes in plants exposed to heavy metals * Plant responses to abiotic stresses, including heavy metal-induced oxidative stress and protection by mycorrhization * Plants' oxidative response to nanoplastics * The effect of novel biotechnological vermicompost on tea yield and plant营养含量文本还参考了一些评论文章,包括讨论: *作物植物中非生物胁迫耐受性中的活性氧和抗氧化剂机制 *重金属诱导的活性氧物种:植物毒性和物理化学的植物对植物的氧化作用的氧化作用,这些植物对植物的氧化作用是对本植物的氧化作用,这些植物对植物的氧化量进行了分析:该植物对遗产的含量为小多拟南文。植物具有抗氧化剂系统,可帮助抵消由活性氧(ROS)造成的损害。该系统包括过氧化氢酶和过氧化物酶等酶,以及谷胱甘肽和抗坏血酸等非酶。本书探讨了有效的抗氧化剂系统如何帮助植物耐受诸如干旱和盐度之类的环境压力。它针对植物的生物技术和分子生物学专家,是本科生和研究生的其他阅读材料。Hakeem博士目前是沙特阿拉伯吉达的阿卜杜勒齐兹国王大学的教授。他在印度新德里的贾米亚·哈姆达德(Jamia Hamdard)拥有植物学博士学位,并于2011年完成。Hakeem博士是几个著名的奖学金的接受者,包括伦敦皇家生物学会的奖学金。在2016年加入阿卜杜勒齐兹国王大学之前,哈基姆博士在克什米尔大学担任助理教授,后来在马来西亚大学获得了奖学金。他因其在植物生态生理学,生物技术,分子生物学,药用植物研究和环境研究方面的专业知识而受到认可。除了他的研究工作外,他还广泛出版了,由国际出版商撰写或编辑了70多本书,以及140多个同行评审的期刊文章。他目前在几个高影响力科学期刊的编辑委员会任职。