自主机器人系统近年来引起了越来越多的关注,在这种环境中,环境是机器人导航,人类机器人互动和决策的关键步骤。现实世界机器人系统通常会从多个传感器中收集视觉数据,并经过重新识别以识别许多对象及其在复杂的人拥挤的设置中。传统的基准标记,依赖单个传感器和有限的对象类和场景,无法提供机器人对策划导航,互动和决策的需求的综合环境理解。作为JRDB数据集的扩展,我们揭开了一种新颖的开放世界式分割和跟踪基准,介绍了一种新型的开放世界式分割和跟踪基准。JRDB-Panotrack包括(1)各种数据室内和室外拥挤的场景,以及
ic ̇ \ „ _ 4 ì M a æ ̇ d %–+ _ 6ı M /¡ 6ä $ ̨ ƒ bp 6o 0Û o Ì i [ 6 ~ NET /¡ $ ( í /¡ $ ( '...0d&ì'¤ 32 $0 %_¿ ö( € S ̇ \ „ _ 4 ì M a æ ̇ d %–+ _ 6ı M /¡ 6ä $ ̨ ƒ >& p 6o 0Û o >' ( &É _ > 8 Z0Û o Ì i L † '̇ K '¤ $20 ” Gü%2 1N ~ & I € S vb [ 6
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
摘要 自从我开始做博士后研究以来的过去 20 年里,遗传学和基因组学领域发生了巨大的变化。我整个职业生涯的主要研究目标一直是了解人类疾病遗传学,并且我开发了比较基因组学和比较遗传学来生成了解人类疾病的资源和工具。通过比较基因组学,我对足够多的哺乳动物进行了测序,以了解人类基因组中每个碱基的功能潜力,并选择了脊椎动物来研究赋予许多物种关键性状的进化变化。通过比较遗传学,我将狗开发为人类疾病的模型,表征基因组本身并确定导致狗复杂疾病和癌症的生殖系基因座和体细胞突变列表。将所有这些发现和资源汇总在一起,为了解基因组进化、人类及其最好的朋友的复杂性状和癌症的遗传学打开了新的大门。
方法:回顾性纳入了 62 名接受 FDOPA PET 和 MRI 检查的未接受治疗的胶质瘤患者。对比增强 T1 加权图像、T2 加权图像、液体衰减反转恢复图像、表观扩散系数图和相对脑血容量图以及 FDOPA PET 图像用于体素特征提取。使用无监督两级聚类方法,包括自组织映射和 K 均值算法,并将每个类标签应用于原始图像。将肿瘤区域内每个类的标签对数比应用于支持向量机以区分 IDH 突变状态。计算受试者工作特征曲线的曲线下面积 (AUC)、准确度和 F1-socore,并将其用作性能指标。
对光高度敏感,因此我们可以在低照度下看东西。 它无法分辨精细的细节,并且容易受到光饱和的影响。 这就是我们从黑暗的房间走到阳光下时会暂时失明的原因:视杆细胞一直处于活跃状态,并被突然的光线饱和。 视锥细胞 视锥细胞是眼睛的第二种受体。 它们对光的敏感度不如视杆细胞,因此可以忍受更多的光线。 视锥细胞有三种,每种对不同波长的光敏感。 这使我们能够看到彩色图像。眼睛有大约 600 万个视锥细胞,主要集中在视网膜中央凹。 中央凹是视网膜的一小部分,图像可在此固定。 盲点 盲点也位于视网膜上。 尽管视网膜主要被光感受器覆盖,但在视神经进入眼睛的地方有一个盲点。 盲点没有视杆细胞或视锥细胞,但我们的视觉系统会对此进行补偿,所以在正常情况下我们无法意识到它。 神经细胞 视网膜还有专门的神经细胞,称为神经节细胞。 有两种类型: X 细胞:这些细胞集中在中央凹,负责早期检测模式。 Y 细胞:这些细胞在视网膜中分布更广泛,负责早期检测运动。 视觉感知 了解眼睛的基本构造有助于解释视觉的物理机制,但视觉感知不止于此。 视觉器官接收到的信息必须经过过滤并传递给处理元素,以便我们识别连贯的场景,消除相对距离歧义并区分颜色。 让我们看看我们如何感知大小和深度、亮度和颜色,它们对于有效的视觉界面的设计都至关重要。
HONORS & AWARDS Honorable Mention, SIOP Owens Scholarly Achievement Award (Best Paper) for 2020 Carter et al., Understanding job satisfaction in the causal attitude network (CAN) model European Association for Work and Organizational Psychology (EAWOP) Best 2019 Practitioner Poster Finalist for Harris et al., Applicant Reactions to Ideal Point Measures of Personality Herbert Zimmer Award for Research Scholarship 2018 University of Georgia, I-O心理学系Donald L.授予杰出硕士论文奖学金2018年佐治亚大学,I-O心理学系DAN MACK研究奖与个体差异和选择有关的研究2017年佐治亚大学I-O心理学系
犬乳腺肿瘤具有作为转化肿瘤学中自然发生的乳腺癌模型的巨大潜力,因为它们与人类乳腺肿瘤具有相同的环境风险因素、关键组织学特征、激素受体表达模式、预后因素和遗传特征。我们旨在开发允许对犬乳腺肿瘤 (CMT) 进行功能分析的体外工具,因为我们对驱动这些异质性肿瘤生长的潜在生物学了解甚少。我们建立了来自 16 名患者的 24 个类器官系的长期培养,包括来自正常乳腺上皮或良性病变的类器官。CMT 类器官重现了它们所来自的原发组织的关键形态学和免疫组织学特征,包括激素受体状态。此外,遗传特征(驱动基因突变、DNA 拷贝数变异和单核苷酸变异)在肿瘤-类器官对中得到保留。我们展示了 CMT 类器官如何成为体外药物测定的合适模型,并可用于研究特定突变是否可预测治疗结果。此外,我们可以对 CMT 类器官进行基因改造,并使用它们进行汇集的 CRISPR/Cas9 筛选,其中文库表示得到准确维护。总之,我们提出了一个强大的 3D 体外临床前模型,可用于转化研究,其中可以从同一患者体内繁殖来自正常、良性和恶性乳腺组织的类器官,以研究肿瘤发生。
在这项工作中,我们提出了梦想,这是一种fMRI到图像的方法,用于重建从大脑活动中查看的图像,基于人类Vi-Sual System的基本知识。我们制作的反向途径模仿了人类如何看待视觉世界的高度和平行性质。这些量身定制的途径专门用于fMRI数据的解密语义,颜色和深度线索,反映了从视觉刺激到fMRI录音的前进途径。这样做,两个组件模仿了人类视觉系统中的反向过程:反向Vi-Sual Toalsosis Cortex(R-VAC)逆转了该大脑区域的途径,从fMRI数据中提取语义;反向平行的PKM(R-PKM)组件同时预测fMRI信号的颜色和深度。实验表明,从外观,结构和语义的一致性方面,我们的方法优于最新模型。代码将在https://github.com/weihaox/dream上提供。
国家疾病控制中心(NCDC)被MOHFW确定为拟议的国家卫生任务的“技术节点机构”。NCDC环境与职业健康气候变化与健康中心(CEOH&CCH)正在实施国家气候变化与人类健康计划(NPCCHH),作为国家气候变化和人类健康行动计划(SAPCCHH)的一部分,已为GOA国家准备。sapcchh是果阿卫生服务部编写的长期愿景和计划文件,适用于2027年。它突出了当前和未来的气候变化脆弱性,疾病负担以及通过在该州制定气候响应性和可持续的医疗保健系统来改善同样的倡议。
