当我们在社交行为中感到联系或参与时,我们的大脑是否真的在正式、可量化的意义上“同步”?大多数研究都使用高度控制的任务和同质的受试者池来解决这个问题。为了采取更自然的方法,我们与艺术机构合作,众包神经科学数据:在 5 年的时间里,我们从数千名博物馆和节日游客那里收集了脑电图 (EEG) 数据,他们自愿参与 10 分钟的面对面互动。熟悉程度不同的两对参与者坐在互波机内——这是一种艺术神经反馈装置,可将每对 EEG 活动的实时相关性转化为光图案。由于此类参与者之间的 EEG 相关性容易受到噪声污染,在随后的离线分析中,我们使用虚部相干性和投射功率相关性计算了大脑间耦合,这两个同步指标在很大程度上不受瞬时噪声驱动相关性的影响。当将这些方法应用于具有最一致协议的两个记录数据子集时,我们发现配对的特质同理心、社交亲密度、参与度和社交行为(联合行动和眼神接触)一致地预测了他们的大脑活动同步的程度,最显著的是低 alpha(~7-10 Hz)和 beta(~20-22 Hz)振荡。这些发现支持这样一种观点,即在动态、自然的社交互动过程中,共同参与和联合行动会驱动耦合的神经活动和行为。据我们所知,这项工作首次证明了跨学科、现实世界、众包神经科学方法可能提供一种有前途的方法来收集与现实生活中面对面互动有关的大量丰富数据集。此外,它还展示了普通公众如何参与和参与实验室外的科学过程。博物馆、美术馆等机构或公众出于自我激励而积极参与的任何其他组织都可以帮助促进此类公民科学研究,并支持在科学控制的实验条件下收集大量数据集。为了进一步提高公众对实验室外实验方法的兴趣,本研究的数据和结果通过一个专门为公众量身定制的网站传播(wp.nyu.edu/mutualwavemachine)。
1 我们不使用 Berger 和 Packard 的基于潜在狄利克雷分析 (LDA) 的方法,因为它提取了最流行 (常见) 的主题 (维度),例如词束。LDA 方法在新产品创意的背景下可能会出现问题,因为 LDA 可能会将新颖和独特的词归类为“错误”。成功的新产品创意往往是新颖或独特的 (Dahl and Moreau 2002;Toubia 2006)。在众包创意竞赛中,在创意级别而不是主题级别捕捉非典型性的指标可能更胜一筹,因为它不会筛选出这些新颖或独特的创意。
免责声明在安装,操作和维护设备时,首先阅读本手册,并遵循设备和手册中的所有安全预防措施。如果发生以下任何情况, BYD不承担责任。 •在本手册中描述的条件下不工作。 •安装和使用不符合相关国际,国家或区域标准的环境。 •拆卸,在未经授权的情况下更改产品或修改软件代码。 •不根据产品和手册中的安全说明和预防措施进行操作。 •由异常自然环境造成的损害(武力,例如地震,火灾,风暴,洪水,泥土等)。 •由客户的运输造成的损害。 •由不符合手册中提到的要求的不合格存储条件造成的损害。 •由于疏忽,操作不当或有意损害客户而损坏硬件或数据。 •损坏由第三方或客户造成的系统,包括不符合本手册要求的运输和安装造成的损害,以及不符合本手册要求的识别标志的调整,更改或删除。BYD不承担责任。•在本手册中描述的条件下不工作。•安装和使用不符合相关国际,国家或区域标准的环境。•拆卸,在未经授权的情况下更改产品或修改软件代码。•不根据产品和手册中的安全说明和预防措施进行操作。•由异常自然环境造成的损害(武力,例如地震,火灾,风暴,洪水,泥土等)。•由客户的运输造成的损害。•由不符合手册中提到的要求的不合格存储条件造成的损害。•由于疏忽,操作不当或有意损害客户而损坏硬件或数据。•损坏由第三方或客户造成的系统,包括不符合本手册要求的运输和安装造成的损害,以及不符合本手册要求的识别标志的调整,更改或删除。
a Hochschule für Technik Stuttgart,Schellingstr 24,70174 Stuttgart,德国 - (eberhard.guelch,shohrab.uddin)@hft-stuttgart.de b Imkerverein Waiblingen e.V.Waiblingen,德国 - bernhardwilli@web.de ICWG III/VII 关键词:花朵识别、蜂蜜产量网络门户、地理定位、无人机 摘要:Beesmart 项目旨在利用智能手机的众包方法推导出蜜蜂的地理定位产量目录。因此,核心问题是智能手机应用程序 (App2bee) 的设计以及花朵识别软件的设计,该软件使用智能手机的传感器信息和开花时间信息来识别和定位花朵。实施的花卉识别基于“最小视觉词袋”方法。分类准确率可达到约 60-70%,当然,这受花卉种类繁多的影响,也受图像拍摄方式以及图像质量和分辨率的影响。通过在触摸屏上应用先验简单的手动分割将图像焦点放在所讨论的花朵上,分类结果得到进一步改善。介绍了 App2Bee 的设计和功能,然后详细介绍了通信、数据库和 Web 门户组件。在项目的第二部分,使用固定翼无人机系统研究对蜜蜂很重要的较大花卉区域的分类,该系统配备两种不同类型的相机,即 RGB 数码相机和 NIR 数码相机。当然不可能识别单朵花,但可以证明,相同花朵的较大花田,例如红三叶草,可以用这种方法进行分类。利用现有数据,还可以对裸地、道路、低牧场、高牧场以及混合牧场进行分类。对于高牧场,可以自动识别花簇,如蓍草。1.简介
智能手机已转换为便携式GNSS(全球导航卫星系统)接收器。具有数十亿此类设备记录的GNSS数据具有很大的科学研究潜力,并具有前所未有的时空分辨率。但是,目前访问大型GNSS智能手机数据的访问量是有限的,并且数据处理具有挑战性。Camaliot项目(机器学习技术在GNSS IOT数据融合中的应用)旨在解决这些问题,以促进众包GNSS数据的可用性,以进行天气预报和太空天气监测。Camaliot众包活动中大量的GNSS数据具有异质性的质量。为了应对此数据处理挑战,我们使用机器学习(ML)开发了一种自动数据选择算法。在这项研究中,比较了不同ML模型的分类性能。还检查了不同数据质量指标的重要性。初始结果表明,基于ML的分类器可以在广告系列的实际数据上获得95%的精度,而无需为质量指标设置明确的阈值。基于选定的智能手机GNSS数据,也进行了对流层参数估计实验。
涉及人类与自动化系统交互的任务变得越来越普遍。由于人类行为的不确定性以及由于人为因素而导致失败的可能性很高,这种集成系统应在必要时通过调整其行为做出智能反应。设计高效交互驱动系统的一种有前途的途径是混合主动范式。在这种情况下,本文提出了一种学习混合主动人机任务模型的方法。建立可靠模型的第一步是获取足够的数据。为此,我们开展了一项众包活动,并根据收集到的数据训练学习算法,以对人机任务进行建模并使用马尔可夫决策过程 (MDP) 优化监督策略。该模型考虑了人类操作员在交互过程中的行为以及机器人和任务的状态。一旦学习了这样的模型,就可以根据代表任务目标的标准优化监督策略。本文中的监督策略涉及机器人的运行模式。基于 MDP 模型的模拟表明,不确定性规划求解器可用于根据人机系统的状态调整机器人的模式。机器人运行模式的优化似乎能够提高团队的表现。因此,来自众包的数据集是一种有用的材料
在过去二十年中,随着数字技术使在线社区和人群成为强大的创新源泉,开放式创新 (OI) 势头强劲 (Butticè & Ughetto, 2023 ; Füller 等人,2009 ; Jaribion 等人,2023 )。通过开放式创新,组织正在“开放”其以前封闭的创新流程,可能允许入站和出站流动 (Chesbrough, 2003 )。在开放式创新中,一种特别流行的入站知识流是众包——将任务或挑战传播给一群人的过程,而不是将其指定给特定的、通常是内部的“代理人”(Afuah & Tucci,2023 年;Brunswicker 等人,2017 年;Cappa,2022 年;Howe,2006 年、2008 年;Mack & Landau,2020 年;Pénin & Helmchen,2011 年;Piazza 等人,2022 年)。通过参与众包,公司努力从组织外部的大量个人那里收集知识(Dahlander & Gann,2010 年)。这使他们能够快速产生大量新想法;然而,大量的新想法使得识别最有价值的想法成为比以前更具挑战性的任务(Hoornaert 等人,2017 年;Majchrzak 和 Malhotra,2020 年)。虽然组织专家为想法评估增加了宝贵的领域知识,但他们也是一种稀缺且昂贵的资源(Bell 等人,2023 年;Toubia 和 Florès,2007 年)。作为回应,公司越来越多地参与众包投票,让大量成本低得多的众包工作者参与想法评估(Brabham,2008 年;Chen 等人,2020 年;Howe,2008 年;Majchrzak 和 Malhotra,2020 年)。最近的研究表明,众包投票可以产生与专家评估相当的表现(例如,Magnusson 等人,2016 年;Mollick 和 Nanda,2016 年)。允许人群对想法进行投票不仅有助于克服组织注意力缺陷(Chen 等人,2020 年;Piezunka 和 Dahlander,2015 年),还可以增加人群参与竞赛的热情(Chen 等人,2020 年),有助于新企业的生存和获得种子资金(Quignon,2023 年),并增加随后在众包活动中产生的想法的数量(Chen 和 Althuizen,2022 年)。到目前为止,在创新管理研究中观察到的人群由组织外部的人组成(例如,有兴趣进一步改进产品的主要用户、参与挑战的竞赛参与者或受雇完成工作的零工)。虽然它们可以帮助组织获取组织内部无法获得的特定知识或大量能力,但让人类参与众包工作,尤其是众包投票,是有局限性的。作为人类,众筹投票者容易受到偏见的影响,他们的评价可能受到注意力限制、羊群效应(早期的评分会影响随后的积极评分,因为选民会遵循最初的评价)或相互投票行为(贝尔
过去十年,系统和认知神经科学的研究呈指数级增长。系统神经科学专注于神经回路和系统的结构和功能,而认知神经科学则以认知背后的生物过程为中心。这两个学科使用的方法经常重叠(即行为测量)。这两个子学科使用的样本量通常由于所选方法涉及的时间、成本和侵入性以及目标人群的可用性而不足。例如,心理学研究的样本量中位数在 40 到 120 之间变化(Marszalek 等人 2011)。虽然这些数字可能足以检验一些假设,但它们通常动力不足(Button 等人 2013;开放科学合作 2015)。
摘要 众包具有巨大的潜力:例如,宏观任务众包可以为应对气候变化的工作做出贡献。宏观任务众包旨在利用群体智慧解决棘手问题等非平凡任务。然而,宏观任务众包需要大量劳动力,而且执行起来很复杂,这限制了它的效率、效果和用途。人工智能 (AI) 的技术进步可能会通过支持促进众包来克服这些限制。然而,要实现这一点,需要更好地理解 AI 在宏观任务众包促进方面的潜力。在这里,我们求助于舞蹈理论来发展这种理解。在宏观任务众包中,可供性帮助我们描述表征促进者和 AI 之间关系的行动可能性。我们遵循两阶段、自下而上的方法:初始开发阶段基于对学术文献的结构化分析。随后的验证和改进阶段包括两个观察到的宏观任务众包计划和六次专家访谈。从我们的分析中,我们得出了支持宏观任务众包中的 17 项促进活动的七种人工智能可供性。我们还确定了说明可供性的具体表现形式。我们的研究结果增加了学术界对宏观任务众包的理解,并推动了关于促进的讨论。此外,它们还帮助从业者确定将人工智能融入众包促进的潜在方法。这些结果可以提高促进活动的效率和宏观任务众包的有效性。
准确地描绘路面上的坑洼不仅有助于消除安全相关顾虑并提高驾驶员的通勤效率,还可以减少交通机构不必要的维护成本。在本文中,我们提出了一种基于智能手机的系统,该系统能够精确估计坑洼的长度和深度,并介绍了坑洼数据收集、轮廓聚合以及坑洼警告和报告的整体设计。所提出的系统依靠车载智能手机的内置惯性传感器来估计坑洼轮廓,并警告驾驶员即将出现的坑洼。由于驾驶行为和车辆悬架系统的差异,构建此类系统的一个主要挑战是如何聚合来自多辆参与车辆的相互冲突的传感器报告。为了应对这一挑战,我们提出了一种新颖的可靠性感知数据聚合算法,称为可靠性自适应真相发现(RATD)。它推断每个数据源的可靠性并以无监督的方式聚合坑洼轮廓。我们的现场测试表明,所提出的系统可以有效地估计坑洼轮廓,并且与流行的数据聚合方法相比,RATD 算法显著提高了轮廓精度。