智能手机已转换为便携式GNSS(全球导航卫星系统)接收器。具有数十亿此类设备记录的GNSS数据具有很大的科学研究潜力,并具有前所未有的时空分辨率。但是,目前访问大型GNSS智能手机数据的访问量是有限的,并且数据处理具有挑战性。Camaliot项目(机器学习技术在GNSS IOT数据融合中的应用)旨在解决这些问题,以促进众包GNSS数据的可用性,以进行天气预报和太空天气监测。Camaliot众包活动中大量的GNSS数据具有异质性的质量。为了应对此数据处理挑战,我们使用机器学习(ML)开发了一种自动数据选择算法。在这项研究中,比较了不同ML模型的分类性能。还检查了不同数据质量指标的重要性。初始结果表明,基于ML的分类器可以在广告系列的实际数据上获得95%的精度,而无需为质量指标设置明确的阈值。基于选定的智能手机GNSS数据,也进行了对流层参数估计实验。
主要关键词