单生物分子电子感测技术在许多领域非常重要,从医学诊断到疾病监测。由于可以将单个生物分子的生理变化转换为可测量的电信号,因此单分子电子生物传感器可以实时实时,高度敏感和高带宽检测单个单个内部或分子间相互作用。这些强大的单分子传感设备在精确提供沿反应途径的稀有和详细的中间信息方面证明了关键优势,并揭示了集合测量中隐藏的独特特性。本综述总结了单分子电子生物传感器的显着进步,强调了单分子水平的生物分子识别,相互作用和反应动力学。传感器的配置,传感机制和代表性应用。此外,还提供了使用光电集成系统来同步感应单个生物分子的电信号和光学信号的观点。
氧化镓是一种超宽带隙 (UWBG) 半导体,有望扩展电力电子、日盲紫外光电探测器、气体传感设备和太阳能电池等领域的功能和应用极限。[1,2] 它已成功应用于一些领域,包括荧光粉和电致发光 (EL) 设备、[3] 日盲光电探测器、[4,5] 光催化 [6] 和电力电子。[7,8] Ga 2 O 3 与许多其他多态氧化物体系(如 Al 2 O 3 、In 2 O 3 和 Sb 2 O 3 )相似,除了热力学稳定的单晶 β 相(C 2/ m)之外,至少还存在四个相。这些相包括菱面体 α -Ga 2 O 3 ( 3 ) R c 、立方 γ -Ga 2 O 3 ( 3 ) Fd m 、正交 ε / κ -Ga 2 O 3 ( Pna 2 1 ) 和立方 δ -Ga 2 O 3 ( 3) Ia 相。需要注意的是,δ 相的存在仍有待讨论,有人认为它可能是由 β 相和 ε / κ 相混合形成的。[9]
作者:GUYLIAN STEVENS、KOEN DE BOSSCHERE 和 PASCAL VERDONCK 综合医疗网络、互联医疗和医疗物联网 (IoMT) 的兴起导致生成的数据量急剧增加。目前医疗领域的碎片化结构不适合管理或充分利用如此大量的信息。在数据已成为货币且传感器不断生成新数据的世界里,我们不再能够处理这种持续的流入。因此,需要一种计算方法来分析和可视化这些数据,以防止医疗系统和提供商淹没在“无用”数据的汪洋大海中。新型微芯片的发展正在进入医疗保健领域。到目前为止,大多数可穿戴设备都在使用,而新的发展正在为体内传感设备“insideables”开辟道路。这将导致个性化医疗,并导致数据量激增。医疗保健准备好了吗?
将石墨烯集成到电子、光子或传感设备中的限制因素之一是无法在隔离器上直接生长大规模石墨烯。因此,需要将石墨烯从供体生长晶片转移到隔离目标晶片上。在本研究中,通过电化学分层程序将石墨烯从化学气相沉积的 200 毫米锗/硅 (Ge/Si) 晶片转移到隔离 (SiO 2 /Si 和 Si 3 N 4 /Si) 晶片上,使用聚甲基丙烯酸甲酯作为中间支撑层。为了影响石墨烯的粘附性能,本研究调查了目标基板的润湿性。为了增加石墨烯在隔离表面上的粘附性,在石墨烯转移过程之前用氧等离子体对它们进行预处理。润湿接触角测量表明,表面与氧等离子体相互作用后亲水性增加,从而提高了石墨烯在 200 毫米目标晶圆上的附着力,并可能在标准 Si 技术中对基于石墨烯的器件进行概念验证开发。
本文介绍了一种基于物联网的室内空气质量监测平台,该平台由一个名为“Smart-Air”的空气质量传感设备和网络服务器组成。该平台依靠物联网和云计算技术,可以随时随地监测室内空气质量。Smart-Air 是基于物联网技术开发的,可以高效监测空气质量,并通过 LTE 实时将数据传输到网络服务器。该设备由微控制器、污染物检测传感器和 LTE 调制解调器组成。在研究中,该设备被设计用于测量气溶胶、VOC、CO、CO 2 和温湿度的浓度,以监测空气质量。然后,按照韩国环境部规定的程序,成功测试了该设备的可靠性。此外,云计算已集成到网络服务器中,用于分析设备数据,根据卫生部的标准对室内空气质量进行分类和可视化。开发了一款应用程序来帮助监测空气质量。因此,经批准的人员可以随时随地通过网络服务器或应用程序监测空气质量。网络服务器将所有数据存储在云中,为进一步分析室内空气质量提供资源。此外,该平台已在韩国汉阳大学成功实施,以证明其可行性。
抽象的人皮肤通过皮下触觉小体之间的协同作用感知外部环境刺激。通过模仿人皮肤的功能,具有多种感测功能的软电子产品在健康监测和人造感觉中具有重要意义。最近十年见证了多模式触觉感应设备和软生物电子学之间前所未有的发展和融合。尽管有这些进展,但传统的柔性电子设备通过将单极传感设备整合在一起,以实现压力,应变,温度和湿度的多模式触觉感应。此策略导致高能消耗,有限的整合和复杂的制造过程。已经提出了各种多模式传感器和无串扰的传感机制来弥合自然感觉系统和人工感知系统之间的差距。在这篇综述中,我们提供了触觉传感机制,集成设计原理,信号耦合策略以及当前用于多模式触觉感知的应用的全面摘要。最后,我们强调了当前的挑战,并提出了未来的观点,以促进多模式触觉感知的发展。
摘要 在现代搜救 (SAR) 行动中,快速部署、态势感知和急救人员 (FR) 安全是取得成功的最重要先决条件。在欧盟项目中,CURSOR 自主机器人资产、检波器和弹性通信得到了开发和组合,以增强 FR 团队的作战能力并提高从灾区救出尽可能多的幸存者的概率。在本文中,作为 CURSOR 项目 (H2020) 的一部分,描述了两个这样的平台,它们具有高机动性和多种功能:紧急网关,一种用于工作现场部署的强大便携式通信中心,以及无人机舰队,一种多无人机、多角色空中无人机组合,用于区域测绘、持续监测和重型传感设备和工具运输。这些技术目前正在开发中,并已作为 CURSOR 项目的 SAR 套件的一部分进行原型设计,该套件将于明年开始现场测试活动。关键词:搜索和救援 (SAR)、弹性网络、工地通信、无人驾驶飞行器 (UAV)、无人机、应急响应人员、地震。1. 简介
我们研究了倾斜的Weyl半准薄膜的表面等离子体极化的分散体和光谱。倾斜的Weyl半含量在Weyl节点处具有倾斜的Weyl锥,并用封闭的费米表面和I型II分类为I型,并带有过时的Weyl锥和开放的费米表面。我们发现,即使在没有外部磁场的情况下,该系统的表面等离子体极化的分散也是非偏置的。此外,我们证明了倾斜参数对控制这种非进取心具有深远的作用。我们揭示了II型Weyl半分化的薄膜以负基组速度托有表面等离子体极化模式。此外,我们表明该结构的角光谱是高度不对称的,并且在吸收性和反射率中,这种角度不对称性在很大程度上取决于倾斜的Weyl semimimetal的倾斜参数。这些令人兴奋的功能建议在光学传感设备,光学数据存储和量子信息处理的设备中使用倾斜的Weyl半学。
尽管空气污染是人类健康的最大威胁之一,但公众可获得的数据往往很少,而且不太准确,也不太及时更新。例如,斯德哥尔摩市只有大约 5-10 个空气质量测量点。这意味着,在传感设备附近,可用数据良好,但只能区分几个街区之外的情况。为了让个人获得大城市的最新信息,固定测量不足以清楚地了解当前的空气质量状况。相反,需要其他方法来收集这些数据,例如通过移动测量。GOEASY 是一个由欧盟委员会资助的项目,该项目使用欧洲新导航服务伽利略来支持更多基于位置的服务应用。作为 GOEASY 项目的一部分,评估了协作应用程序的潜力,用户参与其中,以帮助患有哮喘等呼吸相关疾病的个人。本论文介绍了架构的选择和实现用于此目的的移动平台。使用安装在一系列物体上的传感器,可以实时收集并提供空气质量数据。结果是一个移动平台和连接的 Android 应用程序,它利用空气质量传感器将污染测量结果连同位置坐标一起报告给中央服务器。感谢 fe
摘要对于医疗传感设备,例如伤口愈合贴片,需要提供可穿戴和长期可用的电源。 这就需要经济高效、重量轻的电池。 我们在此提出一种由 Zn 阳极和聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)阴极组成的金属空气电池。 PEDOT:PSS 层通过薄膜沉积而成,由于其高粘附性而用作阴极,无需粘合剂。 分析了两种不同厚度的薄膜类型。 评估了 1-丁基-3-甲基咪唑辛基硫酸盐离子液体(据报道也充当稳定剂)对电性能的影响。 电极表现出低表面电阻率和相当大的放电容量。 结果表明,PEDOT:PSS 在空气电极中适当地充当了 O 2 氧化还原反应基质和导电粘合剂,这意味着 PEDOT:PSS 薄膜适合用于 Zn-空气电池的阴极。此外,我们展示了一种聚合物生物相容性锌空气电池装置,总厚度约为 2 毫米,易于组装、重量轻且经济高效。