纳米技术是科学、工程和技术的一个分支,涉及原子或分子尺度上小于 100 纳米物质的尺寸和公差。纳米粒子由于其独特的尺寸依赖性而具有广泛的应用(Lu 等人,2012 年)。磁性纳米粒子因其广泛的应用而备受关注,例如蛋白质和酶的固定、生物分离、免疫测定、药物输送和生物传感器。纳米粒子由于尺寸小而具有较高的表面积与体积比,这赋予了纳米粒子非常独特的特性(Sagadevan 等人,2015 年)。纳米粒子独特的化学和物理性质使其非常适合设计新的和改进的传感设备;尤其是电化学传感器和生物传感器(Wang 等人,2016 年)。纳米粒子的重要功能包括固定生物分子、催化电化学反应、增强电极表面与蛋白质之间的电子转移、标记生物分子甚至作为反应物 (Luo et al. 2006))。一般来说,金属氧化物纳米粒子是无机的。Fe、Ni、Co、Mn 和 Zn 等各种纳米粒子是广泛接受的磁性材料,可用于磁传感器、记录设备、电信、磁性流体和微波吸收器等广泛应用 (Zhu et al. 2014;Poonguzhali et al. 2015)。在各种金属氧化物纳米粒子中,二氧化锰是一种重要的 P 型过渡金属氧化物
信息物理系统和工业物联网的复杂性和数据生成率不断提高,要求在资源受限的互联网边缘相应地提高人工智能能力。与此同时,数字计算和深度学习的资源需求呈指数级增长,这是不可持续的。弥补这一差距的一种可能方法是采用资源高效的大脑启发式“神经形态”处理和传感设备,这些设备使用事件驱动、异步、动态神经突触元素和共置内存进行分布式处理和机器学习。然而,由于神经形态系统与传统的冯·诺依曼计算机和时钟驱动的传感器系统有着根本的不同,大规模采用和将神经形态设备集成到现有的分布式数字计算基础设施中面临着一些挑战。在这里,我们描述了神经形态计算的当前形势,重点关注带来集成挑战的特征。基于此分析,我们提出了一个基于微服务的神经形态系统集成概念框架,该框架由一个神经形态系统代理组成,它将提供分布式系统所需的虚拟化和通信功能,并结合一种提供工程流程抽象的声明式编程方法。我们还提出了可以作为实现该框架基础的概念,并确定了实现神经形态设备大规模系统集成所需的进一步研究方向。
摘要 — 脑机接口 (BCI) 是用户和系统之间强大的通信工具,它增强了人脑直接与环境通信和交互的能力。过去几十年来,神经科学和计算机科学的进步推动了 BCI 的令人振奋的发展,从而使 BCI 成为计算神经科学和智能领域的顶级跨学科研究领域。可穿戴传感设备、实时数据流、机器学习和深度学习方法等最新技术进步增加了人们对基于脑电图 (EEG) 的 BCI 在转化和医疗保健应用方面的兴趣。许多人受益于基于 EEG 的 BCI,它有助于在工作场所或家中单调的任务下持续监测认知状态的波动。在本研究中,我们调查了脑电信号传感技术和 BCI 应用中计算智能方法的最新文献,弥补了过去五年 (2015-2019) 系统总结中的空白。具体来说,我们首先回顾了 BCI 的现状及其重大障碍。然后,我们分别介绍了用于收集和清理 EEG 信号的先进信号传感和增强技术。此外,我们展示了最先进的计算智能技术,包括可解释的模糊模型、迁移学习、深度学习和组合,以在流行的应用中监控、维护或跟踪人类的认知状态和操作性能。最后,我们提供了几个受 BCI 启发的创新医疗保健应用,并讨论了基于 EEG 的 BCI 的一些未来研究方向。
摘要:BTSP-4445L 和 M 3 -44-8 电池中使用的温度传感器组件已进行了修改,以消除与 Embraer 145 系列飞机上的 EICAS 系统连接时的温度误解。背景:20 世纪 70 年代,Marathon 开发了一种模拟温度传感和显示系统,该系统由基于热敏电阻的温度传感器和安装在驾驶舱内的仪表组成,用于指示电池的内部温度。该系统仍在 Jetstream 31、Embraer 110 和 120 以及 deHaviland Dash 7 和 8 飞机上使用。由于系统可靠性高,决定在 ERJ-145 飞机中使用该传感器组件。此后已确定,ERJ-145 系列飞机上使用的数字 EICAS 系统在与温度传感设备接口时需要更高的精度。电阻读数的微小波动和电池温度传感设备中的漏电干扰可能会被当今敏感的航空电子软件误解,从而导致错误的温度读数。出于这些原因,MarathonNorco Aerospace (MNAI) 工程部门重新设计了通用温度传感器,以提高 ERJ-145 系列飞机上电池温度传感的接口质量。已为重新设计的带板温度传感器组件创建了新的零件号。温度传感器线的布线已更改,以便于测试和维修。(参见第 4 页的图 1)。生产切入:新的温度传感器组件将被标识为 29529-003。部件编号 29529-002 将继续生产用于模拟应用。
在光学和电化学等多个领域工作的传感器具有使生物传感比在单一领域工作的传感器更有效的特性。为了将这些领域结合到一个传感设备中,需要提供一组特定特性的材料。本文讨论了氟掺杂氧化锡 (FTO) 薄膜,它具有光学功能以引导损耗模式,同时具有电化学功能,即作为工作电极的导电材料。分析了基于 FTO 的光纤损耗模式谐振 (LMR) 传感器在光学和电化学领域的性能。此外,为了增强传感器的适用性,还开发了类似探针的反射配置。研究发现,FTO 可以被视为其他薄导电氧化物 (TCO) 的有前途的替代品,例如氧化铟锡 (ITO),它迄今为止经常应用于各种双域传感概念中。在光学领域,FTO-LMR 传感器对外部折射率 (RI) 的灵敏度在 1.33 – 1.40 RIU 的 RI 范围内达到 450 nm/RIU。反过来,在电化学领域,1,1 ′-二茂铁二甲醇溶液中 FTO 电极的响应已达到 RedOx 电流低峰峰分离。与 ITO-LMR 传感器相比,FTO-LMR 传感器在很宽的电位范围内表现出施加电位对 LMR 波长偏移的显著影响。使用链霉亲和素作为目标生物材料表明,FTO-LMR 方法的无标记生物传感应用是可能的。双域功能允许在两个域中接收到的读数之间进行交叉验证,并且在应用跨域相互作用时可以增强光学灵敏度。
摘要:随着金属氧化物半导体 (MOS) 制造技术的不断发展,晶体管自然而然地变得更耐辐射,这是通过稳步减小栅极氧化物厚度来增加栅极氧化物和沟道之间的隧穿概率。不幸的是,尽管已开发的晶体管具有这种抗辐射性能,但核电站 (NPP) 领域仍然需要更高的抗辐射水平。特别是在严重事故条件下,读出电路可能需要大约 1 Mrad 的总电离剂量 (TID),而反应堆堆芯周围则需要 100 Mrad。在核电站等恶劣辐射环境中,微型袖珍裂变探测器 (MPFD) 等传感器将是一种很有前途的技术,可用于检测反应堆堆芯中的中子。对于这些传感器,读出电路应从根本上靠近传感设备放置,以最大限度地减少信号干扰和白噪声。因此,高辐射环境下的电路必须具有抗辐射能力。本文介绍了采用 SiGe 130 nm 和 Si 180 nm 制造工艺、不同通道宽度和互补金属氧化物半导体 (CMOS) 和双极 CMOS (BiCMOS) 晶体管类型的抗辐射电荷敏感放大器 (CSA) 的各种集成电路设计。这些电路在高水平活度:490 kCi 的钴-60 γ 射线环境下进行了测试。实验结果表明,随着辐照剂量的增加,幅度下降 2.85%–34.3%,下降时间增加 201–1730 ns,信噪比 (SNR) 降低 0.07–11.6 dB。这些结果可为抗辐射运算放大器在晶体管尺寸和结构方面的设计提供指导。
尽管空气污染是人类健康的最大威胁之一,但公众可获得的数据往往很少,而且不太准确,也不太及时更新。例如,斯德哥尔摩市只有大约 5-10 个空气质量测量点。这意味着,在传感设备附近,可用数据良好,但只能区分几个街区之外的情况。为了让个人获得大城市的最新信息,固定测量不足以清楚了解当前的空气质量状况。相反,需要其他方法来收集这些数据,例如通过移动测量。GOEASY 是由欧盟委员会资助的一个项目,该项目使用欧洲新的导航服务伽利略来实现更多基于位置的服务应用。作为 GOEASY 项目的一部分,我们评估了协作应用程序的潜力,用户可以通过这些应用程序帮助患有哮喘等呼吸相关疾病的人。本论文介绍了架构的选择以及实现此目的的移动平台。使用安装在一系列物体上的传感器,可以收集并提供实时空气质量数据。结果是一个移动平台和连接的 Android 应用程序,它利用空气质量传感器将污染测量结果连同位置坐标一起报告给中央服务器。由于所使用的底层系统的特性,与当今可用的传统基于位置的服务相比,这提供了一个准确且更能抵御攻击的平台。结果使患有呼吸系统疾病的人能够以更大的分辨率接收更准确、最新的信息。它还可以展示支持技术作为 GOEASY 项目的一部分的潜力。关键词 空气质量、传感器、基于位置的服务、伽利略、Android 应用程序、Raspberry Pi
在光学和电化学等多个领域工作的传感器具有使生物传感比在单一领域工作的传感器更有效的特性。为了将这些领域结合到一个传感设备中,需要提供一组特定特性的材料。本文讨论了氟掺杂氧化锡 (FTO) 薄膜,它具有光学功能以引导损耗模式,同时具有电化学功能,即作为工作电极的导电材料。分析了基于 FTO 的光纤损耗模式谐振 (LMR) 传感器在光学和电化学领域的性能。此外,为了增强传感器的适用性,还开发了类似探针的反射配置。研究发现,FTO 可以被视为其他薄导电氧化物 (TCO) 的有前途的替代品,例如氧化铟锡 (ITO),它迄今为止经常应用于各种双域传感概念中。在光学领域,FTO-LMR 传感器对外部折射率 (RI) 的灵敏度在 1.33 – 1.40 RIU 的 RI 范围内达到 450 nm/RIU。反过来,在电化学领域,1,1 ′-二茂铁二甲醇溶液中 FTO 电极的响应已达到 RedOx 电流低峰峰分离。与 ITO-LMR 传感器相比,FTO-LMR 传感器在很宽的电位范围内表现出施加电位对 LMR 波长偏移的显著影响。使用链霉亲和素作为目标生物材料表明,FTO-LMR 方法的无标记生物传感应用是可能的。双域功能允许在两个域中接收到的读数之间进行交叉验证,并且在应用跨域相互作用时可以增强光学灵敏度。
推动将计算推向“边缘” [2]的力。这些移动应用程序中有许多属于物联网(IoT)的类别,该领域由智能传感设备主导,主要对传感器数据进行推断[9]。诸如此类的部署根本不(理想情况下,不应该)需要云计算资源;一项需要非平凡的能源访问的服务。永恒的工程挑战一直在了解我们如何从移动设备中获得最大收益。我们可以为最少的功率做什么最大的有用计算?这种类型的性能最大化涉及硬件和软件优化。在硬件方面,最有影响力的设计选择之一是目标计算机。具有应用程序代理的成熟的多核系统可能会提供最佳的原始速度,但在大规模上可能是功率且昂贵的。大多数物联网部署都选择更节能的核心,以更低的绩效以提高可持续性。历史上降级为简单的8和16位机器,最新一代的MCU看到了向更有能力的32位处理器的过渡,ARM Cortex-M家族是最受欢迎的。这些以数十MHz运行的单核系统可能坐在计算性能梯子的底部,但它们在发电效率上是无与伦比的。弄清楚如何运行现代边缘计算工作 - 即。mL推断)近年来对资源受限的MCU一直是一个积极的研究领域。能量自2019年以来,这个概念已被称为Tinyml,该概念试图打开“在超低功率(<1MW)MCU上执行优化的ML模型,并以最小的功率征服” [4]。MCU级设备通常使用<100KB的内存和1-2MB的闪存存储运行。能够执行相同的ML任务,该任务将在MCU上的多核系统上运行,这是非常强大的。
摘要近年来,范德华(Van der Waals)材料中表面声子极地(SPHP)的激发受到了纳米光子学界的广泛关注。alpha相钼三氧化物(α-MOO 3),一种天然存在的双轴双曲晶体,由于其在不同波长带的三个正交指导下支持SPHP的能力(范围10-20 µM),因此出现是一种有前途的极性材料。在这里,我们报告了大面积(超过1 cm 2尺寸)的制造,结构,形态和光学IR表征,α -moo 3多晶膜通过脉冲激光沉积沉积在熔融二氧化硅底物上。由于随机晶粒分布,薄膜在正常发生率下未显示任何光学各向异性。但是,提出的制造方法使我们能够实现单个α相,从而保留与α -moo 3片的语音响应相关的典型强分散体。报告了IR光子学应用的显着光谱特性。例如,在1006 cm -1处具有极化的反射峰,动态范围为∆ r = 0.3,共振Q因子在45°的入射角下观察到高达53的共振Q。此外,我们报告了SIO 2底物的阻抗匹配条件的实现,从而导致独立于极化的几乎完全完美的吸收条件(R <0.01)在972 cm-1处,该条件可维持以较大的入射角维持。在此框架中,我们的发现似乎非常有前途的,对于使用远场检测设置,用于有效和大规模的传感器,滤镜,过滤器,热发射器和无标签的生物化学传感设备,用于进一步开发无IR线印刷膜,可扩展的膜,用于高效和大规模的传感器,过滤器,热发射器和无标签的生化感应设备。