推动将计算推向“边缘” [2]的力。这些移动应用程序中有许多属于物联网(IoT)的类别,该领域由智能传感设备主导,主要对传感器数据进行推断[9]。诸如此类的部署根本不(理想情况下,不应该)需要云计算资源;一项需要非平凡的能源访问的服务。永恒的工程挑战一直在了解我们如何从移动设备中获得最大收益。我们可以为最少的功率做什么最大的有用计算?这种类型的性能最大化涉及硬件和软件优化。在硬件方面,最有影响力的设计选择之一是目标计算机。具有应用程序代理的成熟的多核系统可能会提供最佳的原始速度,但在大规模上可能是功率且昂贵的。大多数物联网部署都选择更节能的核心,以更低的绩效以提高可持续性。历史上降级为简单的8和16位机器,最新一代的MCU看到了向更有能力的32位处理器的过渡,ARM Cortex-M家族是最受欢迎的。这些以数十MHz运行的单核系统可能坐在计算性能梯子的底部,但它们在发电效率上是无与伦比的。弄清楚如何运行现代边缘计算工作 - 即。mL推断)近年来对资源受限的MCU一直是一个积极的研究领域。能量自2019年以来,这个概念已被称为Tinyml,该概念试图打开“在超低功率(<1MW)MCU上执行优化的ML模型,并以最小的功率征服” [4]。MCU级设备通常使用<100KB的内存和1-2MB的闪存存储运行。能够执行相同的ML任务,该任务将在MCU上的多核系统上运行,这是非常强大的。
主要关键词