本指导文件仅供评论之用。请在《联邦公报》上公布指导草案的日期之前,提交一套电子或书面意见。电子意见提交至 http://www.regulations.gov。书面意见提交至食品药品管理局卷宗管理人员(HFA-305),地址:5630 Fishers Lane, Rm. 1061, Rockville, MD 20852。所有意见都应在《联邦公报》上公布的可用性通知中列出卷宗编号。可从通信、推广和发展办公室(OCOD)获取本指导的更多副本,地址:10903 New Hampshire Ave., Bldg. 71, Rm. 3128, Silver Spring, MD 20993-0002,或致电 1-800-835-4709 或 240-402-8010,或发送电子邮件至 ocod@fda.hhs.gov,或通过互联网访问 http://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances。如对本指南内容有疑问,请通过上述电话号码或电子邮件地址联系 OCOD。
髓母细胞瘤 (MB) 是儿童中最常见的恶性脑肿瘤,以其异质性和治疗相关毒性而闻名,迫切需要新的治疗靶点。我们使用 Illumina TruSight Tumor 15 面板分析了 69 例拉丁-伊比利亚分子特征化的髓母细胞瘤中 15 个驱动基因的体细胞突变谱。我们根据变异的临床影响和致癌性对其进行了分类。在患者中,66.7% 为 MB SHH ,13.0% 为 MB WNT ,7.3% 为 MB Grp3 ,13.0% 为 MB Grp4 。在发现的 63 个变异中,54% 被归类为 I/II 级,31.7% 为致癌/可能致癌。我们观察到 33.3% 的病例至少有一个突变。 TP53(23.2%,16/69)是突变最多的基因,其次是 PIK3CA(5.8%,4/69)、KIT(4.3%,3/69)、PDGFRA(2.9%,2/69)、EGFR(1.4%,1/69)、ERBB2(1.4%,1/69)和 NRAS(1.4%,1/69)。约 41% 的 MB SHH 肿瘤表现出突变,TP53(32.6%)是突变最多的基因。I/II 级和致癌/可能致癌的 TP53 变异与复发、进展和较低的生存率有关。PIK3CA 和 KIT 基因中可能可操作的变异是
支持本研究结果的所有数据均包含在主要论文、补充图和补充表中。所用抗体和蛋白质试剂的列表见补充表 1。HDR 模板和 sgRNA 序列的列表见补充表 2 和 3。mRNA 编码 DNA 模板序列的列表见补充表 4。所有其他数据均可通过电子邮件联系相应作者索取。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月1日。; https://doi.org/10.1101/2024.03.27.583983 doi:biorxiv Preprint
70 kDa (EXO70) 蛋白的胞外囊泡成分是胞外囊泡复合物的组成部分,与胞吐过程中的囊泡束缚有关。抗霉菌位点 O (MLO) 蛋白是植物特异性钙通道,一些 MLO 同工型可促进真菌白粉病的致病。我们在此检测到拟南芥 exo70H4 和 mlo2 mlo6 mlo12 三重突变体植物在叶毛状体次生细胞壁的生物发生方面存在意外的表型重叠。生化和傅里叶变换红外光谱分析证实了这些突变体中毛状体细胞壁组成的缺陷。表达荧光团标记的 EXO70H4 和 MLO 的转基因系表现出这些蛋白质的广泛共定位。此外,mCherry-EXO70H4 错误定位在 mlo 三重突变体的毛状体中,反之亦然,MLO6-GFP 错误定位在 exo70H4 突变体的毛状体中。GFP 标记的 PMR4 胼胝体合酶(EXO70H4 依赖性胞吐的已知货物)的表达表明,mlo 三重突变体植物的毛状体中 GFP-PMR4 的细胞壁输送减少。植物和酵母细胞中的体内蛋白质-蛋白质相互作用测定揭示了 EXO70.2 亚家族成员和 MLO 蛋白之间的异构体优先相互作用。最后,exo70H4 和 mlo6 突变体结合时表现出协同增强的对白粉病攻击的抗性。总之,我们的数据表明 EXO70 和 MLO 蛋白在调节毛状体细胞壁生物合成和白粉病易感性方面存在异构体特异性相互作用。
在临床变异解释数据库的背景下,一个潜在的问题是,当它们实际上是种系(与患者的祖先人群相关的)时,将变体的分类错误(与癌症相关)。这可能取决于所使用的参考基因组,如果错误分类的变体与诊断,治疗或预后直接相关,则可能在临床上有问题(13)。换句话说,当这种变体可能不是癌症特异性时,可以用作潜在治疗的指示,或者在诊断过程中肿瘤学家可能会意外使用的是提供不准确的预后信息或分子病理学家。错误分类的变体对于在癌症研究的背景下也要意识到。人类变体起源(无论是种系还是躯体)通常是转化肿瘤学研究中的必要规范,从药物机理到临床试验的纳入标准(14,15)。
体细胞突变可能在植物进化中起作用,但与植物体细胞突变有关的常见期望仍未得到充分的测试。与大多数动物不同,假定植物种系在发育后期被搁置,这导致人们期望植物会沿生长积累体细胞突变。因此,对躯体突变的命运做出了一些预测:突变在植物组织中的频率通常很低。高频的突变具有更高的代际传播的机会。树的分支拓扑决定了突变分配;暴露于紫外线(紫外线)辐射会增加诱变。为了深入了解植物中突变的积累和传播,我们产生了两个高质量的参考基因组和一个独特的数据集,该数据集的60个高覆盖范围 - 整体 - 基因组序列的两种热带树种,番茄科植物(Fabaceae)(fafaceae)(fafaceae)和sextonia rubra(lauraceae)。,我们在D.圭亚那的D. guianensis中发现了15,066个从头突变,在S. rubra中发现了3,208个,令人惊讶的是,几乎全部都以低频发现。我们证明1)低频率突变可以传输到下一代; 2)突变系统发育偏离树的分支拓扑; 3)突变率和突变光谱并不明显受到紫外线暴露差异的影响。总的来说,我们的结果表明,植物生长,衰老,紫外线暴露和突变速率之间的联系比通常想象的要复杂得多。
简介多倍体一词是指包含两组以上染色体的细胞。在多个细胞物质中,当生殖细胞经历全基因组重复(WGD)并引起完整的多倍体生物,或者在亚生物下,只有在否则二倍体生物体中的体细胞中,就可以在生物水平上发现多倍体。在这些不同类型的多倍体之间,多倍体化的后果可能会有显着差异。在这里,我们重点介绍多倍体在亚生物水平上的后果,概述了正常生理和疾病中体细胞的功能。在发现染色体后不久,在十九世纪后期对多倍体细胞进行了第一次观察(Wilson,1925年)。在过去的一个世纪中,对植物和昆虫的研究极大地有助于我们理解体细胞多倍体的出现,在其他地方进行了广泛的审查(Almeida等,2022; Edgar等,2014; Hua and Orr-Weaver,2017)。总而言之,体细胞可以通过细胞融合或经过非规范细胞周期复制其DNA,但不分为两个子细胞。Many terms have been used to describe these non-canonical cell cycles but, in essence, they can be divided into two types: non-canonical cell cycles in which cells alternate between S and G phase, which we refer to as ‘ endoreplication cycles ' , and non-canonical cell cycles in which cells undergo all phases of the canonical cell cycle but exit M phase before the initiation orcompletion
解释小样本量(<400);研究可能无法检测到组之间的差异和/或临床试验之间的差异,无法检测到罕见的严重不良事件b。剂量1和2之间的间隔与当前建议的间隔不同。根据当前的建议,而不是在第7天进行管理,而是在第28天进行剂量2。(Kamoltham [2007]和Strady [1988])c。混淆d的严重风险d。结果不一致,一项研究报告结果与其他研究相反(与剂量后3相比,剂量后2比例更高)和剂量后2结果的广泛值范围e。不一致是N/A,因为在结果缩写中仅对此设计进行了一项研究:AE =不良事件; HDCV =人二倍体细胞疫苗; id =内皮; im =肌内; pcecv =纯化的雏鸡胚胎细胞疫苗; PREP =暴露前预防; PVCV =纯化的Vero细胞疫苗; PVRV =纯化的Vero细胞狂犬病疫苗(Verorab); RCT =随机对照试验; RVNA =狂犬病病毒中和抗体; SAE =严重的不良事件; scr =血清转换率
越来越多的证据支持非生物应激反应在植物多倍体成功中的主要作用,这在恶劣的环境中逐渐蓬勃发展。然而,由于基因组加倍和自然选择之间的相互作用,了解多倍体的生态生理学具有挑战性。在这里,我们研究了两种相关的dianthus broteri细胞型的生理反应,基因表达和表型 - 与不同的基因组重复(4×和12倍)以及进化轨迹以及短暂的极端温度事件(42/28°C和9/5°C)。与4倍相比,12×cyto类型显示应力反应基因(Sweet1,Pp2C16,AI5L3和ATHB7)和增强气体交换的表达更高。在热应激下,两个拼写物的生理性能严重受损,基因表达改变,胞嘧啶甲基化降低。然而,12×细胞型表现出显着的生理耐受性(通过更大的光化学完整性保持气体交换和水状态,并可能增强水的储能),同时下调了PP2C16表达。相反,尽管优先保存水分,但4×D。Broteri易受热应力,显示出非稳固的光合限制和不可逆的光化学损害的迹象。这种细胞型还呈现了热量下调ATHB7的基因特异性表达模式。这些发现提供了有关多倍体产生的分歧应力反应策略和生理性的见解,突出了其对植物功能的广泛影响。