©作者2022。由牛津大学出版社出版,代表欧洲心脏病学会。这是根据Creative Commons Attribution-Noncmercial Licens(https://creativecommons.org/licenses/by-nc/4.0/)发行的一份开放访问文章,该媒介在任何媒介中都可以在任何媒介中进行任何媒介,但前提是原始工作被正确引用。有关商业重复使用,请联系journals.permissions@oup.com 1
2.04.111 - 前列腺癌管理的基因表达谱和蛋白质生物标志物 2.04.115 - 用于选择靶向癌症疗法的综合基因组分析 2.04.151 - 用于乳腺癌靶向治疗的种系和体细胞生物标志物检测(包括液体活检)(BRCA1、BRCA2、PIK3CA、Ki- 67、RET、BRAF、ESR1) 2.04.153 - 用于癌症管理的肿瘤信息循环肿瘤 DNA 检测 2.04.155 - 用于前列腺癌靶向治疗的种系和体细胞生物标志物检测(包括液体活检)(BRCA1/2、同源重组修复基因变异、NTRK 基因融合) 2.04.156 - 用于卵巢癌靶向治疗的种系和体细胞生物标志物检测(包括液体活检) (BRCA1、BRCA2、同源重组缺陷、NTRK) 2.04.157 - 免疫检查点抑制剂治疗的体细胞生物标志物检测(BRAF、MSI/MMR、PD-L1、TMB) 2.04.33 - 用于前列腺癌诊断和癌症风险评估的基因和蛋白质生物标志物 2.04.45 - 非小细胞肺癌靶向治疗的体细胞生物标志物检测(包括液体活检)(EGFR、ALK、BRAF、ROS1、RET、MET、KRAS) 2.04.53 - 转移性结直肠癌靶向治疗的体细胞生物标志物检测(包括液体活检)(KRAS、NRAS、BRAF和HER2) 2.04.61 - 用于预测前列腺癌复发的基因表达谱检测和循环肿瘤DNA检测结肠癌 2.04.77 - 体细胞基因检测以选择患有黑色素瘤或神经胶质瘤的个体进行靶向治疗 (BRAF)
分子病理学分子肿瘤学 - 实体瘤2021.08 17基因相关 /染色体测试A-2体细胞测试 - 实体瘤体细胞保留2018.03核酸提取(来自FFEP)D004-2
全基因组关联研究已发现许多与复杂疾病相关的常见和罕见种系遗传变异,包括单核苷酸多态性 (SNP)、拷贝数变异 (CNV) 和其他组成结构变异。然而,很大一部分疾病易感性仍无法解释,通常称为缺失遗传性。一个越来越受关注的领域是受精后出现的遗传变异,称为嵌合体突变,发生在细胞分裂过程中。携带有害突变的细胞可能通过修复机制、细胞凋亡或免疫监视被消除,而其他细胞可以将其突变传递给子细胞。因此,在早期胚胎发育过程中,每次细胞分裂都会保留一个或多个合子后突变。随着发育的进展,这些突变不断积累,导致细胞间基因组景观多样化。因此,大多数细胞最终携带独特的基因组。虽然许多嵌合体突变可能是中性的,但某些突变可能是致病的。嵌合体可发生在体细胞和生殖细胞中,体细胞嵌合体最近因其在神经遗传疾病中的潜在作用而受到关注。合子后突变涵盖所有主要的突变类型,包括染色体非整倍体、大规模结构异常、CNV、小插入/缺失和单核苷酸变异。其中,嵌合性染色体改变,也称为体细胞CNV(sCNV),通常是由于胚胎发生过程中的染色体不稳定性造成的。这些突变主要发生在合子后或胚胎发育早期,偶尔由合子后对减数分裂错误的部分挽救而引起,导致细胞亚群携带这些突变。值得注意的是,sCNV 在人类神经元中大量存在(1)。大脑主要从外胚层发育而来,而血细胞起源于中胚层。细胞比例高的体细胞突变更有可能发生在发育早期。如果这些突变出现得足够早,例如在原肠胚形成期间或之前,它们可能同时存在于脑细胞和血细胞中。随着个体年龄的增长,克隆性造血会导致血细胞中积累大量高细胞分数体细胞突变,而这些突变可能不存在于其他组织中。因此,分析年轻个体血液的基因组数据可以识别与大脑共有的体细胞突变,为了解脑部疾病的遗传易感性提供有价值的见解(图 1)。目前至少有 8 个实验平台可用于检测 sCNV。表 1 比较了这些分子检测的分辨率、优点和缺点。其中,
需要一种有效的mRNA敲低策略来探索细胞和胚胎中的基因功能,尤其是在早期胚胎发育过程中了解母体mRNA衰变的过程。cas13是一种新型的RNA靶向CRISPR效应蛋白,可以结合并切割互补的单链RNA,该RNA已用于小鼠和人类细胞中的mRNA敲低以及植物中的RNA病毒干扰。cas13尚未据报道用于猪。在当前的研究中,我们探讨了猪中CRISPR/ CAS13D介导的内源性RNA敲低的可行性。KDM5B是H3K4ME3的组蛋白去甲基酶,在转录水平下下调了50%,在猪成纤维细胞中,CRISPR/CAS13D在转录水平下被下调。敲低KDM5B诱导的H3K4ME3表达,并降低了H3K27ME3,H3K9ME3,H3K4AC,H4K8AC和H4K12AC的丰度。这些变化影响了细胞增殖和细胞周期。此外,将CRISPR/CAS13D系统稳定地整合到猪基因组中,导致CAS13D的连续表达和KDM5B的持续敲低。最后,在猪par植物发育胚胎中进一步验证了CAS13D的RNA靶向潜力。通过将cas13d mRNA和靶向KDM5B的GRNA的显微注射到猪卵母细胞中,KDM5B的表达被下调,H3K4ME3的丰度按预期增加,并且胚胎发育相关基因的表达被相应地更改。这些结果表明CRISPR/CAS13D为猪的时空转录操作提供了易于编程的平台。繁殖(2021)162 149–160
将组织活检基因组分析的结果与补充液体活检数据相结合,可以全面了解肿瘤生物学。Illumina Cell-Free DNA Prep with Enrichment 是一种多功能文库制备试剂盒,可用于从循环无细胞 DNA (cfDNA) 或从 FFPE 组织样本中提取的基因组 DNA (gDNA) 制备可用于测序的文库 (图 1)。该工作流程包括用于纠正错误和减少假阳性的唯一分子标识符 (UMI),从而能够准确、灵敏地检测 FFPE 肿瘤样本中的低频突变。Illumina Cell-Free DNA Prep with Enrichment 与 Illumina 和第三方富集探针或面板兼容,以支持灵活的实验设计。本应用说明展示了 Illumina Cell-Free DNA Prep with Enrichment 在生成高质量 NGS 文库和从 FFPE 样本中鉴定低频体细胞变异方面的优异性能。
越来越多的证据支持非生物应激反应在植物多倍体成功中的主要作用,这在恶劣的环境中逐渐蓬勃发展。然而,由于基因组加倍和自然选择之间的相互作用,了解多倍体的生态生理学具有挑战性。在这里,我们研究了两种相关的dianthus broteri细胞型的生理反应,基因表达和表型 - 与不同的基因组重复(4×和12倍)以及进化轨迹以及短暂的极端温度事件(42/28°C和9/5°C)。与4倍相比,12×cyto类型显示应力反应基因(Sweet1,Pp2C16,AI5L3和ATHB7)和增强气体交换的表达更高。在热应激下,两个拼写物的生理性能严重受损,基因表达改变,胞嘧啶甲基化降低。然而,12×细胞型表现出显着的生理耐受性(通过更大的光化学完整性保持气体交换和水状态,并可能增强水的储能),同时下调了PP2C16表达。相反,尽管优先保存水分,但4×D。Broteri易受热应力,显示出非稳固的光合限制和不可逆的光化学损害的迹象。这种细胞型还呈现了热量下调ATHB7的基因特异性表达模式。这些发现提供了有关多倍体产生的分歧应力反应策略和生理性的见解,突出了其对植物功能的广泛影响。
基因编辑 基因编辑是通过插入、删除或修改 DNA 来改变生物体的特定遗传特征。新兴的基因编辑技术和工具(例如 CRISPR)可以以一定的精度编辑基因,从而扩大其在医疗、农业和工业领域的应用。这些突破性技术可能为治疗毁灭性的人类疾病和提供环境可持续的粮食生产系统提供一系列不同的选择,这些系统可以养活不断增长的世界人口,预计到 2050 年将超过 90 亿。目前,人类基因编辑的主要应用是非生殖细胞(“体细胞”),其中 DNA 的任何变化都不会传递给下一代。大多数人体细胞都是体细胞——肾脏、心脏、大脑、皮肤、骨骼、血液和结缔组织都是由体细胞组成的。1 体细胞基因改造正在带来传统疗法无法实现的变革性健康结果。 2 体细胞基因编辑程序的首次试验现已获得批准,人们普遍认为 CRISPR 可能有助于加速治疗以前无法治愈的疾病,例如血友病、囊性纤维化和杜氏肌营养不良症。 3 迄今为止,只有一种用于治疗视网膜营养不良症的基因疗法(Luxturna - Spark Therapeutics)和用于治疗淋巴细胞白血病的 Kymriah(Novartis)是基于细胞的基因疗法(“基因编辑”)的唯一例子。生殖细胞是指参与生殖的细胞(即精子或卵细胞),编辑这些细胞、它们的前体或早期胚胎的细胞意味着这些变化将传递给后代。
癌症突变可分为种系突变和体细胞突变。种系突变是遗传的,存在于身体的每个细胞中,通常会增加个体患某些癌症的倾向(例如乳腺癌中的 BRCA 突变)。相比之下,体细胞突变在人的一生中由于环境因素(例如接触烟草烟雾、紫外线辐射或化学致癌物)而发生在特定细胞中。虽然种系突变会导致家族性癌症综合征,但体细胞突变在散发性癌症中更为常见 [3]。
明显分为阳性和阴性;根据我们的观察,没有子叶表现出嵌合 GFP 荧光(图 4a-j)。在具有活性 GFP 的绿色发芽体细胞胚中,由于叶绿素自发荧光强,几乎观察不到 GFP 荧光;相反,在胚基部的愈伤组织中观察到 GFP 荧光(图 4d,i)。为了研究子叶体细胞胚中的嵌合性,使用 8-30 个子叶胚(来自 6 个品系的 139 个)进行了测序分析。来自品系#47-2 的一个子叶胚在一个体细胞胚中有两种修饰模式。然而,在其他品系中,突变模式在单个子叶胚中明显分开(图 4k)。接下来,通过分析 4 个品系(分别为 #42 - 2、#18、#31 - 2 和 #11)中各 10 个通过体细胞胚胎发生再生的幼苗,分析了突变模式的稳定性。