本发明涉及基于光敏剂的抗微生物隧道装置,该装置位于铁路,机场,医院,办公室和商业场所的入口处,以净化该人和与他相关的物品。基于光动力灭活的机制,提出的抗菌隧道将是一种易于使用的装置,可非选择性地停用微生物。所提出的抗菌隧道将基于HEPA过滤的空气淋浴,该阵雨将带有光激发纳米涂层的光敏剂分子时产生的活性氧。纳米涂层中光敏剂浓度的可调性使其成为多功能使用的合适选择。此外,两个手卫生单元,一个行李净化隧道,一个表演覆盖单元,一个相机和ID扫描设备将使提议的抗菌隧道公寓用于在几种不同的情况下使用。
数十年来,光一直用于治疗多种疾病。卟啉的分离及其在肿瘤中的定位,以及它们在肿瘤组织上的光毒性的发现,导致现代光探测器(PD)和光动力疗法(PDT)的发展(1)。PDT是一种治疗技术,将光敏剂与光源结合起来,以产生活性氧(ROS),它有选择地破坏病理组织(2)。当光敏剂被照亮时,组织中的氧气水平迅速降低,显着降低(3)。减少组织氧限制了ROS的产生,从而降低了PDT的治疗功效(4)。各种光源和纳米颗粒可以诱导组织再氧化,但是这些程序效率低下(5)。大量研究集中于第三代光敏剂,例如血红蛋白和氧化铁(6-10),它们可以通过减轻肿瘤细胞微环境的缺氧来提高PDT的疗效。氧化动力学治疗(OPDT)是近年来开发的一种高端新型医学治疗方法,它利用发光二极管作为光源。激光由于其单波长和高能级而被视为理想的光源。使用同步发射二极管和外部氧气产生源,OPDT可以克服传统上面临PDT的组织缺氧问题。OPDT与传统的PDT一样,当光敏剂暴露于光源,尤其是单重氧自由基时,会产生ROS。ROS会影响细胞成分,包括蛋白质和DNA,导致坏死或凋亡(11)。
光动力疗法(PDT)是一系列局部和表面癌症的临床认可的治疗方式。它利用光激发了局部在恶性肿瘤中的光敏剂,通过与内源性氧相互作用来产生细胞毒性活性氧(ROS)。由于这三个成分是单独的无毒的,因此与传统的抗癌疗法相比,治疗表现出最小的侵入性和更少的全身毒性。但是,PDT仍然存在许多阻碍其临床使用的局限性。尤其是,大多数当前使用的光敏药物的低肿瘤选择性和较差的药代动力学是有问题的,导致PDT治疗后长期光敏性。在本演讲中,我将通过应用超分子和生物方性化学来讨论我们最近的研究进步,以克服这些挑战。通过利用超分子和生物正交方法,我们旨在实现靶向肿瘤的光动力疗法。此外,我们通过实施生物正交技术有效地抑制了剩余的光敏剂后PDT处理后剩余光敏剂的光敏性。这些创新策略有可能提高PDT对癌症治疗的选择性和安全性。
光动力疗法(PDT)已成为实体瘤和非综合疾病的非侵入性和选择性治疗方案的突出性。然而,诸如光渗透到组织的浅渗透和光敏机(PS)的较差的局限性阻碍了其效率。为了应对这些挑战,研究人员正在探索基于纳米技术的递送工具和基于细胞的方法,以改善PS分布,靶向积累和受控药物释放。本期特刊展示了肿瘤学和非综合PDT药物输送系统的进步。本社论旨在概述本期《特刊》中发表的八篇研究文章和七篇评论论文。obaid及其同事将他们的研究重点放在改善基于OSMIUM(II)的光敏剂(ML18J03)的性能上,该光敏剂(ML18J03)被配制为DSPE-MPEG2000胶束。这种配方不仅改善了光敏剂的发光,而且还提高了其肿瘤选择性。通过将光敏剂封装在胶束中,搜索者能够增强其在肿瘤组织中的积累并达到更高水平的选择性,从而解决了光敏剂的低发光量子产率所带来的挑战[1]。组合疗法一直在引起人们的注意,以增加癌症治疗的特征结果。在这种情况下,Duchi和合作者探索了角蛋白纳米粒子中氯素-E6(CE6)和紫杉醇(PTX)的共囊化,以治疗骨肉瘤(OS)。这种组合显示出抑制肿瘤细胞生长的有希望的结果。通过将CE6和PTX共同交付,研究人员观察到OS的原位模型中的协同作用,与单独使用任何一种治疗相比,肿瘤大小显着降低了[2]。Muragaki及其同事分析了Talapor Fium介导的PDT的效率,作为复发性胶质母细胞瘤(GMB)的治疗方法。对70例使用PDT手术和38例单独手术的患者进行了回顾性分析。结果表明,与对照组相比,PDT组的中值无进展生存期更长。第二次手术后的中位总生存期在PDT组中也更长。该分析进一步表明,不管发生前病理学,PDT的有效性都是一致的,这表明复发性GBM患者的潜在生存益处[3]。在同一主题上,Tsung Yang及其同事致力于开发用于治疗GMB的新治疗选择。作者研究了使用光化学间杀菌剂将治疗药物释放到GBM细胞中使用光激活的光敏剂。该研究采用了依托泊苷(ETOP)和原磷脂IX(PPIX),并被载入聚胺树状聚合物纳米球中。与游离PPIX相比,该配方显示出增强的细胞摄取,与单独使用ETOP和PPIX治疗相比,光照射会增加协同作用,氧气应激和凋亡[4]。这些纳米载体被设计为靶向过表达表皮生长的细胞为了应对癌症治疗中精确药物定位的挑战,Nonell和同事的研究致力于开发靶向的化学量 - 纳米载体。
癌症是全球主要死亡原因之一,化疗仍然是主要治疗方法。1 在传统医学中,癌细胞会发生凋亡;然而,这些治疗的效果是非选择性和非特异性的,健康的正常细胞也会受到损害,从而导致一些副作用,如脱发、呕吐和癌症疼痛。2 – 4 近年来,据报道,各种新兴的癌症治疗方法可以改善传统药物治疗,例如光动力疗法 (PDT)、5 光热疗法 (PTT) 6 和纳米颗粒药物输送系统。7 PDT 是一种光疗法,涉及光和光敏剂与氧结合使用以诱导细胞死亡。最近的研究报告称,将 Eu 3+ 离子作为光敏剂掺入纳米粒子中并用近红外光照射可导致材料产生活性氧 (ROS),表明纳米粒子具有
摘要:当前研究的动机是制定一项策略,通过消除PDT的局限性,从而在乳腺癌细胞上提供有效且有效的光动力疗法(PDT)。为此,合成并封装在脂质体纳米颗粒中,并封装在癌细胞中可激活的二硫键桥接邻苯丙氨酸。使用傅立叶变换(FT-IR)光谱,核磁共振(NMR)光谱,基质辅助激光解吸/离子化时间(MALDI-TOF)质谱量(MALDI-TOF)质量光谱仪,紫外线 - 可见(Uviolet-vis)粒子分析;并使用MTT分析,荧光显微镜和流式细胞术在MCF-7乳腺癌细胞系上测试了纳米制定。结果表明,合成的二硫键桥接的邻苯烷具有具有治疗活性的波长吸收值(685 nm),脂质体纳米颗粒具有良好的特征(平均尺寸为167.6 nm and pl dyspersity intex(pdi)的平均尺寸为167.6 nm和pHOLS的pH pH pH pH,pH pH是pH,均具有pH值,深色毒性和明显的轻毒性(与深色毒性相比,p <0.001)具有明显的凋亡(p <0.05 vs.对照组)。因此,为了进一步研究,这些结果表明,纳米制定对靶向和有效PDT对乳腺癌细胞的巨大潜力。
摘要:表皮生长因子受体 (EGFR) 在癌细胞的增殖和转移中起着关键作用。EGFR 表达和激活异常是许多人类恶性肿瘤的标志。因此,EGFR 靶向疗法在癌症治疗方面具有巨大潜力。近年来,光动力疗法 (PDT) 作为一种非侵入性癌症治疗方法越来越受到关注。在 PDT 中,光激发光敏剂产生活性氧,导致局部细胞毒性。PDT 的关键方面之一是选择性地将足够的光敏剂运送到肿瘤环境中。因此,越来越多的策略被设计出来以促进 EGFR 靶向 PDT。在此,我们回顾了最近的纳米生物技术进展,这些进展将 PDT 的前景与 EGFR 靶向分子癌症治疗相结合。我们概括了光动力治疗中敏化剂的化学性质及其作用方式,总结了不同靶向部分的优点和缺点,强调了 EGFR 靶向癌症光动力治疗的未来前景。
光动力治疗是一种于1900年开始的治疗方法。无论如何,直到最近十年,光动力疗法才重新考虑了其在微生物治疗中使用的“牙齿牙髓学”中几个好元素的考虑。最近,一些论文支持其用于“根管处理”的利用。光动力学的想法需要灭活微生物暴露,这可能是内源性和外源性颗粒,这通常是通过轻能量引起的,通常在看到红色和近红外区域的典型波长中。这会引起光敏剂的激发,从而导致单线氧和其他氧气的形成,这些氧气和其他氧气响应于细胞内成分,因此会导致细胞失活和细胞死亡。最近,已经建议采用光动力疗法来清洁植物内细胞病变治疗。最近的分布尝试了光动力疗法,以减轻体外,体内和离体的细菌负担减轻。本文的目的是审查牙齿牙髓病领域中现有的光动力疗法及其作用机理,“光敏剂”,光和临床程序的来源及其局限性。
多年的研究致力于寻找实现这一目标的新的高效系统。在光驱动的CO 2降低中,[4]需要光敏剂(PS)来收集太阳能和催化剂(CAT)以减少二氧化碳。两者都可以是同质的或异质的。添加了牺牲电子供体(E-d)以关闭催化循环并再生光敏剂的基态。在同质系统中,PS和CAT均主要是基于过渡金属的,并且很少基于有机物。,[5],[6] [7],尽管贵金属具有出色的光化学和电化学特性(例如ru,ir,re),使用3D金属的环保替代系统(例如mn,Fe,co,ni)正在变得更有竞争力。[8]通常,3D金属仅表现出两个可能的氧化态,从而导致形成了两极的还原产物,例如一氧化碳,甲醛或甲酸或甲酸。分子氢是相关的,选择性差异很大。CO和H 2作为产品(也称为同性气)的混合物构成了以更生态的方式产生燃料的机会[9],要么是这样(用于燃气涡轮机)[10]或通过进一步的反应(例如产生甲醇)。[11]
摘要:超分子表面活性剂为构造太阳能燃料合成系统的多功能平台,例如,通过将两亲光感应器和催化剂的自组装成各种超分子结构。然而,在太阳能燃料生产中对两亲光的光敏剂的利用主要集中在产生气态产物上,例如分子氢(H 2),一氧化碳(CO)和甲烷(CH 4),而甲烷(CH 4)的合成催化剂(TON)的合成催化剂属于合成催化剂,通常是在数百万范围内的合成催化剂。受到生物脂质 - 蛋白质相互作用的启发,我们在此提出了一种新型的生物杂交组装策略,该策略利用光敏剂作为表面活性剂形成胶束支架,该胶束支架与酶(即氢化酶),即半人工光合作用。具体而言,具有[ruthenium tris(2,2'-二吡啶)] 2+头组与酶相关时具有高光催化活性的表面活性剂,因为它们具有阳性带电的[RU] 2+中心的静电相互作用,可以与酶相互作用,以与酶相互作用,以使胶束上的电子转移在胶束eNzeme-Enzyzyzyzyzeme-Enzyzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme界面相互作用。时间分辨的吸收和发射