四元环在药物研发中越来越受欢迎,这促使合成化学界改进和重新发明旧策略来制作这些结构。最近,应变释放概念已被用于构建复杂的架构。然而,尽管有许多策略可用于获取小碳环衍生物,但氮杂环丁烷的合成仍未得到充分开发。在这里,我们报告了一种光催化自由基策略,用于从氮杂双环[1.1.0]丁烷中获取密集功能化的氮杂环丁烷。该方案使用有机光敏剂,该光敏剂通过不同类型的磺酰亚胺精细控制关键的能量转移过程。氮杂双环[1.1.0]丁烷通过自由基应变释放过程拦截自由基中间体,从而只需一步即可获得双功能化的氮杂环丁烷。该自由基过程是通过光谱和光学技术以及密度泛函理论计算的结合揭示的。通过合成各种氮杂环丁烷目标物(包括塞来昔布和萘普生的衍生物)证明了该方法的有效性和通用性。
红光(600 - 700 nm,〜2.1 - 1.8 eV)由低能辐射组成,具有高能力,可以穿透皮肤并诱导刺激作用。这些特征使该波长范围非常有前途的光基疗法。旨在讨论光生物调节的作用机制,首先,我们从皮肤和光线相互作用的广泛视角开始,重点是内源光敏剂,对激发态和反应性氧化剂的形成以及信号效应器的激活。红色光谱范围内光子的特殊方面是,它们被内源性光敏剂所吸收得多,因此产生的反应性氧化剂(与其他可见光范围相比,与其他可见光范围相比),从而使这些在皮肤相互作用的几种信号传动途径的后果主要使其在皮肤相互作用中与红色light light light light light light light light light light。的确,上皮细胞中红光的影响涉及对代谢反应的控制,几个关键基因和转录因子的调节以及细胞内一氧化氮储备的调节。在本文中,我们讨论了红光如何与所有这些变量相互作用并最终引起剧烈的组织激活。我们还分析了红光光子对一氧化氮稳态的影响,对牛皮癣的光疗带来了影响。很可能在与其他具有相似能量的光子相互作用期间和之后也可能发生针对红光光子相互作用所描述的几种观测和机制。
花生品种的种子,Tg 38被孟买Bhabha原子研究中心(BARC)的钴60 1来源的200 Gy伽马射线(M发电)辐照。tg 38,一种伽玛射线突变体,于2006年在奥里萨邦,西孟加拉邦,阿萨姆邦和东北州的狂犬病 /夏季被释放[3]。在雨季中播种了辐射的种子,以及未经处理的种子,2008年。在M一代中,仔细检查了植物2的各种经济特征,并选择了39种变体并单独收获。在M中,一个后代(Tg 3 38-38)具有更多的三号种子,更大的豆荚和种子,与其父母相比,育种breed true(图1)。通过在雨天和夏季从M到M世代的雨季和夏季,在后代的POD和其他特征中为POD和其他特征的真实繁殖性质确保了该突变体,并被指定为4 9 Tg 73(图2)。在Panjabrao Deshamukh Krishi Vidyapeeth博士评估了测试其适用性和适应性,TG 73
(HO)通过在适当的光照射下在肿瘤中获得的光敏剂(PS)的光激发(PS)。3,4 PDT过程可以分为I型和II型,具体取决于PS与其附近的ps触发反应。3,4具体,I型反应涉及氢原子抽象或电子转移,最终导致自由基和过氧化氢的形成(H 2 O 2),而II型II型通过从电子激发的三胞胎PS到地面分子氧的能量转移导致单线氧(1 O 2)的产生。3,4 II型PDT是主要机制,因为大多数PSS是II型。3,4不幸的是,这种对周围氧气的依赖性与肿瘤缺氧的固有特性相矛盾。缺氧是由于快速癌细胞增殖和不规则的血管生成,在实体瘤的微环境中发现了一个显着而重要的特征。5与在大多数健康组织中发现的40-60 mmHg范围相比,肿瘤低氧区域中的氧气通常降至10 mmHg以下。6因此,由于II型PDT高度依赖氧浓度,因此低氧肿瘤
他获得了博士学位。学位于2010年,在:化学技术与冶金学大学(UCTM) - 索菲亚(Bulgaria)的硅酸盐技术,结合材料和高温可融合的非金属材料领域的领域。 他的博士学位论文的标题为:“纳米复合材料混合涂料的调查和评估以保护腐蚀”。 他获得了硕士学位 在2004年获得UCTM – Sofia的冶金学和材料科学学院的化学工程学位,具有硅酸盐材料的专业,其论文的标题是:详细和表征带有perovskite结构的红色陶瓷色素,在Uji - Castellon(Spain)也呈现。 他的学士学位 论文于2002年在同一所大学发表,并致力于:“通过固定的光敏剂对饮料水进行灭菌”。 如今,他是8本书的作者,以及70多个出版物(H-Index 13和660引用),与先进的腐蚀保护系统,陶瓷材料回收,喷雾热解合成和陶瓷传感器元素有关。他获得了博士学位。学位于2010年,在:化学技术与冶金学大学(UCTM) - 索菲亚(Bulgaria)的硅酸盐技术,结合材料和高温可融合的非金属材料领域的领域。他的博士学位论文的标题为:“纳米复合材料混合涂料的调查和评估以保护腐蚀”。他获得了硕士学位在2004年获得UCTM – Sofia的冶金学和材料科学学院的化学工程学位,具有硅酸盐材料的专业,其论文的标题是:详细和表征带有perovskite结构的红色陶瓷色素,在Uji - Castellon(Spain)也呈现。 他的学士学位 论文于2002年在同一所大学发表,并致力于:“通过固定的光敏剂对饮料水进行灭菌”。 如今,他是8本书的作者,以及70多个出版物(H-Index 13和660引用),与先进的腐蚀保护系统,陶瓷材料回收,喷雾热解合成和陶瓷传感器元素有关。在2004年获得UCTM – Sofia的冶金学和材料科学学院的化学工程学位,具有硅酸盐材料的专业,其论文的标题是:详细和表征带有perovskite结构的红色陶瓷色素,在Uji - Castellon(Spain)也呈现。他的学士学位论文于2002年在同一所大学发表,并致力于:“通过固定的光敏剂对饮料水进行灭菌”。如今,他是8本书的作者,以及70多个出版物(H-Index 13和660引用),与先进的腐蚀保护系统,陶瓷材料回收,喷雾热解合成和陶瓷传感器元素有关。
摘要过去十年见证了癌症免疫疗法的重大突破。这一发展主要是由于免疫控制的癌细胞逃避而引起的,因此肿瘤对常规疗法的抗性。免疫原性细胞死亡(ICD)被认为是实现总肿瘤细胞消除的最有希望的方法之一。它激活T细胞适应性免疫反应,并导致长期免疫记忆的形成。ICD可以由许多抗癌治疗方式触发,包括光动力疗法(PDT)。在这篇综述中,我们首先讨论了基于几类光敏剂(包括卟啉和非孢子虫)的PDT的作用,并严格评估其在ICD诱导中的潜在作用。我们强调了PDT与纳米技术联合使用ICD诱导的新兴趋势,该纳米技术代表了第三代光敏剂,并涉及PDT对ICD的靶向诱导。但是,PDT也有一些局限性,包括降低了缺氧肿瘤微环境中ICD诱导的效率。因此,我们严格评估克服此限制的策略,这对于提高PDT效率至关重要。在最后一部分中,我们建议对个性化癌症免疫疗法的未来研究的几个领域,包括基于促进氧气的PDT和纳米颗粒的策略。总而言之,过去几年的见解越来越支持这样一种观念,即PDT是诱导ICD实验癌症治疗的有力策略。但是,大多数研究都集中在小鼠模型上,但是有必要在临床环境中验证这一策略,这将是将来一个充满挑战的研究领域。
结果:模拟表明,使用标准的Indygo试验方案(光通量= 200 j cm 2在球囊壁上)在治疗结束时39%的GBM细胞在治疗结束时被杀死,并且最初的光敏浓度为5μmM.5μMM。 安全。增加P热敏化剂浓度产生的细胞杀伤最大增加,当将浓度加倍至10μm时,有61%的GBM细胞杀死了,并保持治疗时间并保持相同的能力。根据这些模拟,标准试验方案进行了合理的优化,并且在没有潜在危险的情况下,细胞杀死的改善难以实现。为了改善治疗结果,应将重点放在改善光敏剂上。
光动力疗法(PDT)治疗肿瘤因其非侵入性、高治愈率、与化疗、手术、放疗相比副作用小等优点而受到广泛关注。1,2尽管肿瘤PDT在临床试验和应用中取得了很大的进展,3 – 6但是PDT在这些优点上的潜力尚未在实践中充分发挥。研究表明,肿瘤复杂的生物环境,如异常的血管系统和肿瘤异质性,影响了PDT的疗效。7,8肿瘤内的这些不利因素不仅阻碍了光敏剂(PS)试剂的有效递送,而且造成了肿瘤内的缺氧环境。9 – 13对于肿瘤PDT而言,肿瘤中PS的有效富集是首要条件,14因为
癌症放射疗法和光疗被称为治疗耐化疗恶性肿瘤的替代方法。此外,癌症免疫疗法最近已证明是一种潜在的癌症治疗方式,它具有haditsupsanddownsdespiteSteSteSteSteSteStheHeart-tharmingoutcomesthashate。但是,研究人员促进了thatnanotechnology-促进的方法可能会使这些模式的成功成为上层阶级。靶向核苷的适体AS1411是用于重定向载有放射性增强剂和光敏剂的纳米载体的各种适体之一。最近,该适体的潜在适用性已在癌症免疫疗法中进行了研究。在这篇综述中,我们讨论了适体介导的靶向纳米植物的核苷如何改善癌症放射疗法,光疗和不良疗法的副作用,并改善这些治疗方法的结果。
关键词:苯噻嗪,抗氧化剂,1,4-二恶烷,自由基氧化,2-丙醇引入苯噻嗪衍生物代表了在化学和医学各个领域广泛使用的重要且有希望的化合物。这些化合物用作有机溶剂中单体氧化和聚合的抑制剂,用于稳定各类的聚合物,甚至在光敏剂[1-3]中。势噻嗪衍生物取决于化合物的化学结构,具有广泛的生物学和药理活性,这决定了它们在医学中的广泛应用[4-8]。基于苯噻嗪衍生物的药物是相似的化学结构的化合物,仅在不同的活性 *相应作者的取代基的性质上有所不同。电子邮件:gulnaz-sharipova@list.ru