决策算法在社会中的存在感如今正在迅速增加,同时人们也开始担心其透明度以及这些算法可能成为新的歧视来源。事实上,许多相关的自动化系统已被证明会根据敏感信息做出决策或歧视某些社会群体(例如,某些用于人员识别的生物特征识别系统)。为了研究当前基于异构信息源的多模态算法如何受到数据中的敏感元素和内部偏见的影响,我们提出了一个虚构的自动招聘测试平台:FairCVtest。我们使用一组有意识地以性别和种族偏见进行评分的多模态合成档案来训练自动招聘算法。FairCVtest 展示了此类招聘工具背后的人工智能(AI)从非结构化数据中提取敏感信息并以不良(不公平)的方式将其与数据偏见结合起来的能力。最后,我们列出了最近开发能够从深度学习架构的决策过程中删除敏感信息的技术的列表。我们使用其中一种算法(SensitiveNets)来实验歧视感知学习,以消除我们多模态 AI 框架中的敏感信息。我们的方法和结果展示了如何生成更公平的基于 AI 的工具,特别是更公平的自动招聘系统。
摘要 - 机器学习在决策过程中的广泛采用引起了人们对公平性的担忧,尤其是对敏感特征和对少数群体的潜在歧视的治疗。软件工程社区的反应是开发面向公平的指标,经验研究和方法。但是,在整个机器学习生命周期中,理解和分类工程公平的做法仍然存在差距。本文介绍了一种新颖的实践目录,以解决从系统的映射研究中得出的机器学习中的公平性。该研究确定并分类了现有文献中的28种实践,将它们映射到机器学习生命周期的不同阶段。从该目录中,作者提取了可操作的项目及其对软件工程研究人员和从业者的影响。这项工作旨在提供全面的资源,以将公平考虑因素整合到机器学习系统的开发和部署,增强其可靠性,问责制和信誉。
● HW1:研究过程中的道德规范 - 这项作业将向学生介绍开展公平和道德研究的概念。重点将放在对 IRB 本质的历史理解上。学生将完成 CITI 人类受试者研究培训作为其作业的一部分。● HW2:数据和预测中的偏见 - 学生将学习将基本的数据挖掘技术应用于数据。学生将设计和对大型数据集进行统计测试。这些测试将围绕公平概念以及如何利用技术来识别不公平进行设计。● HW3:NLP 中的偏见 - 学生将学习命名实体识别中的性别偏见。解决这项作业需要基本的自然语言处理技术,包括基于转换器的语言模型,如 BERT。● HW4:网络中的偏见——在这项作业中,学生将学习和应用基本的网络技术来发现网络中的性别偏见。女性在网络中的代表性是更多还是更少?她们是否倾向于占据比男性更高或更低的中心位置?注意:在书面和编程作业中,描述和分析的完整性和清晰度与最终的正确答案一样重要。仅发送单个最终值(即使正确)是不够的。请参阅下表:
信息系统 (IS) 目前正在经历根本性转变:直到最近,决策支持都是基于规则的确定性算法开发的。然而,随着人工智能 (AI) 的最新进展,这些决策规则已被概率算法(例如深度学习;参见 Kraus 等人)取代。2020 )。概率算法通过从数据中学习现有模式进行推理,一旦部署,就会在某些不确定性下为看不见的数据提供预测。因此,它们容易产生偏见和系统性不公平,从而对个人或整个群体进行差别对待。先前的研究已多次证明人工智能应用缺乏公平性。例如,研究发现,信贷贷款申请的决策支持系统对某些社会人口群体存在不成比例的偏向 (Hardt and Price 2016; O'Neil 2016 )。
在KHI于2024年5月14日举办的一次召集期间收集了有关指南的反馈,标题为“研究中的居中公平:制定实践策略和确定考虑因素”,以及通过事后调查。召集包括来自堪萨斯州各地的约50名利益相关者,他们审查了这些策略并提供了有价值的反馈,后来又将其纳入了指南。该活动的特色是演讲者EusebioDíaz,M.A。,卫生前进基金会策略,学习与沟通副总裁,来自亚利桑那州立大学的香农·波特略(Shannon Portillo)博士,以及密苏里州肯尼亚大学的M.S.C.R. Bridgette L. Jones,M.S.C.R.。演讲者讨论了研究中的当前公平状态,应对挑战并探索未来的机会。
冰川融化将对海平面产生影响,加剧海岸侵蚀,此外,这种现象还会导致飓风和台风等沿海风暴更加频繁和强烈。沿海地区洪水泛滥程度的增加将导致盐水与地表水和地下水发生碰撞,对饮用水、灌溉和农业构成明显威胁。所有这些现象都将对沿海地区和城市产生有害影响,从而影响当地居民的生活。根据《联合国气候变化框架公约》的估计,超过 6 亿人(约占世界人口的 10%)生活在海拔不到 10 米的沿海地区,全球约 60% 的人口超过 500 万的城市位于海岸线 100 公里以内。
摘要 本章主张采用结构性不公正方法来治理人工智能。结构性不公正包括分析和评价两个部分。分析部分包括社会科学中众所周知的结构性解释。评价部分是一种正义理论。结构性不公正是一个强大的概念工具,它使研究人员和从业者能够识别、表达甚至预测人工智能偏见。本章以人工智能中因结构性不公正而产生的种族偏见为例。然后,本章介绍了哲学家 Iris Marion Young 提出的结构性不公正概念。此外,本章还认为结构性不公正非常适合作为一种人工智能治理方法,并将这种方法与从危害和利益分析或价值陈述开始的替代方法进行了比较。本章表明,结构性不公正为多样性、公平和包容性的价值观和关注提供了方法论和规范基础。本章最后对“结构”和责任的概念进行了展望。结构的概念是正义的核心。一个开放的理论研究问题是人工智能本身在多大程度上是社会结构的一部分。最后,责任的实践是结构性不公正的核心。即使他们不能对结构性不公正的存在负责,每个人和每个组织都有责任在未来解决结构性不公正问题。
塞拉俱乐部委托对清洁能源组合进行独立评估,该组合可以在独立和白崖发电站退役后满足 AECC 的可靠性和能源需求。该分析使用 GenX,这是麻省理工学院和普林斯顿大学的研究人员开发的开源电力系统评估模型,用于评估能源系统如何整合可再生能源、存储和其他技术。该模型可用于评估可再生能源和存储的组合如何满足电力公司的每小时需求。在本例中,该模型用于评估 AECC 的系统。我们的评估保守地假设 AECC 没有机会与 MISO 和 SPP 中的区域电力和容量市场互动,尽管它定期这样做。我们还将 AECC 的 MISO 和 SPP 部门之间的互动限制在仅 275 兆瓦的传输容量,反映了 AECC 对 SPP 需求的预测,该需求与 MISO“伪绑定”。这些保守假设的价值在于,该模型被迫构建替代投资组合,就好像 AECC 完全独立于市场,其系统中的 SPP 和 MISO 部分之间的互动有限,而这种立场通常需要更高的成本。我们的理由是,如果我们能够证明 AECC 可以构建一个独立于市场的具有成本效益的投资组合,那么任何共享的市场资源只会使投资组合更便宜。
艺术。第 49/2023 号法律第 1 条将公平报酬定义为与所执行工作的数量和质量、专业服务的内容和特点成比例的报酬,并符合部长令规定的报酬,对于技术工程和建筑服务,目前以 2016 年 6 月 17 日部长令中指明的关税以及公共合同法附件 I.13 中的规定为代表,该附件根据上述部长令更新了关税框架。如果在第 49/2023 号法律之前,这些关税被视为参考参数,因此在招标过程中可能会降低,那么在第 49/2023 号后续法律通过后产生的现行监管表述似乎确立了这些关税的不可减损性,正如 ANAC 决议中也强调的那样。 343 日。 20.07.2023,其中指出“根据新立法,部长关税成为确定工程和建筑服务合同费用的具有约束力和不可减损的参数”。
