图 1:与常见非病毒载体相关的体内非病毒基因传递主要障碍示意图。当装载的传递载体通过体循环时,它们会遇到许多解剖障碍,包括上皮/内皮衬里和细胞外基质 (ECM)。此外,该区域的专业吞噬细胞负责胶体清除,限制了载体直接作用于靶细胞的能力。同样,蛋白质(即核酸酶)存在于血液和 ECM 中以降解暴露的核酸。最终,穿过细胞质膜是整个生物材料基因转染的关键限速步骤。由于核酸通常不能不受保护地穿过膜,因此物理手段或主动细胞摄取机制(胞吞作用、胞饮作用、吞噬作用、融合)是必要的。然后,内体逃逸、核酸从载体中释放以及运输/易位等细胞内步骤对于成功转染必不可少。
广泛的抗病毒光谱,以抗菌,抗炎和免疫调节特性互补,从而建议自己作为针对SARS-COV-2的药物设计的理想原型[1-4]。当前药物设计策略的主要重点是药物与细胞受体的特定相互作用。相反,我们遵循了一条新路径,重点关注药物和病毒之间的播放,以及通过该药物的可调节物理化学参数控制它的可能性,其中包括脑力学,大小和氧化还原势(氧化),并通过内体pH的变化而受到细胞促进作用的补充。涵盖这种双重影响的模型证明了在Covid-19中使用天然化合物TQ的合理性。其预测能力为靶向SARS-COV-2的纳米药物的系统设计奠定了基础。其central假设是并发的细胞外保护
癌症干细胞(CSC)与肿瘤的启动,美味和耐药性有关,并被认为是癌症治疗的有吸引力的靶标。在这里,我们鉴定了由AXL受体,PYK2和PKCα介导的临床相关的Nexus,并显示了其对TNBC中干性的影响。AXL,PYK2和PKCα表达与基础类乳腺癌患者的干性特征相关,并且在多个间充质TNBC细胞系中它们的耗竭显着减少了乳球形成细胞的数量和具有CSCS特征性标记的细胞的数量。敲低PYK2可降低AXL,PKCα,FRA1和PYK2蛋白的水平,并在PKCα耗竭后获得了类似的趋势。 pyk2 depletion通过FRA1和TAZ介导的反馈回路降低了AXL转录,而PKCα抑制作用诱导AXL将AXL重新分布为内体/溶酶体隔室并增强其降解。 pyk2和pkcα在多个诱导型AXL水平的多个诱导途径的途径上进行合作,并同时使用STAT3,TAZ,FRA1和SMAD3的水平/激活以及多能转录因子NANOG和OCT4。 TNBC敏感性细胞对PYK2和PKCα抑制的诱导,这表明靶向AXL-PYK2-PKCα回路可能是消除TNBC中CSC的有效策略。敲低PYK2可降低AXL,PKCα,FRA1和PYK2蛋白的水平,并在PKCα耗竭后获得了类似的趋势。pyk2 depletion通过FRA1和TAZ介导的反馈回路降低了AXL转录,而PKCα抑制作用诱导AXL将AXL重新分布为内体/溶酶体隔室并增强其降解。pyk2和pkcα在多个诱导型AXL水平的多个诱导途径的途径上进行合作,并同时使用STAT3,TAZ,FRA1和SMAD3的水平/激活以及多能转录因子NANOG和OCT4。TNBC敏感性细胞对PYK2和PKCα抑制的诱导,这表明靶向AXL-PYK2-PKCα回路可能是消除TNBC中CSC的有效策略。
散发性克鲁特兹菲尔德 - 贾科布疾病(SCJD)是最常见的人类prion病,当时会发生细胞prion蛋白(PRP C)自发地折叠并聚集成prion族原纤维,导致致命的Neu rodegeneration中的原因。在SCJD的全基因组关联研究中,我们最近确定了基因STX6和周围周围的风险变异,有证据表明与疾病相关的大脑区域中STX6表达的因果关系增加。 STX6编码Syntaxin -6,这是一种主要参与早期内体的核心蛋白,用于反式 - 高尔基网络恢复级传输。 在这里,我们通过经典的Prion传播研究研究了STX6的遗传耗竭的小鼠模型,并通过经典的Prion传播研究研究了STX6表达在小鼠Prion疾病中的因果作用,评估了纯合和杂合Syntaxin-6敲除疾病孵化周期以及prion孵化的神经病理学的影响。 接种RML Prions后,在STX6 - / - 和STX6 + / < / div>中的孵育周期在SCJD的全基因组关联研究中,我们最近确定了基因STX6和周围周围的风险变异,有证据表明与疾病相关的大脑区域中STX6表达的因果关系增加。STX6编码Syntaxin -6,这是一种主要参与早期内体的核心蛋白,用于反式 - 高尔基网络恢复级传输。在这里,我们通过经典的Prion传播研究研究了STX6的遗传耗竭的小鼠模型,并通过经典的Prion传播研究研究了STX6表达在小鼠Prion疾病中的因果作用,评估了纯合和杂合Syntaxin-6敲除疾病孵化周期以及prion孵化的神经病理学的影响。接种RML Prions后,在STX6 - / - 和STX6 + / < / div>中的孵育周期
神经生长因子(NGF)单克隆抗体是一种治疗慢性疼痛的治疗方法,但由于某些骨关节炎患者的关节损伤恶化而未能获得FDA批准。我们报告说,Neuropilin-1(NRP1)是NGF的富含伤害感受器的联合受体,这对于疼痛的疼痛信号是与肌霉素相关的激酶A(TRKA)信号所必需的。NGF与纳摩尔亲和力结合NRP1。NRP1与人和小鼠伤害感受器中的TRKA共表达。NRP1抑制剂可防止对人和小鼠伤害感受器的刺激激发,并消除小鼠NGF诱发的伤害感受。NRP1敲低钝化NGF刺激的TRKA磷酸化,激酶信号传导和转录,而NRP1的过表达增强了NGF和TRKA信号传导。以及与NGF相互作用的NRP1与伴侣TRKA相关联,从生物合成途径到质膜,然后再与信号内体相关联,从而增强了NGF诱导的TRKA二聚体化,内吞作用和信号传导。分子建模支持C末端基本NGF基序(R/KXXR/K)与NGF/TRKA/NRP1 Plasmambrane复合物中的细胞外“ B” NRP1结构域与2:2:2 stochiementry的相互作用。gα相互作用的蛋白C-末端1(GIPC1),一种脚手架NRP1和TRKA与肌球蛋白VI的PDZ结合蛋白,在具有NRP1和TRKA的伤害感受器中共表达。敲低的GIPC1消除了NGF诱发的伤害感受器的激发和小鼠的疼痛样行为。因此,NRP1是NGF/TRKA疼痛信号传导所必需的先前未识别的共受体。NRP通过衔接蛋白GIPC1结合NGF和伴侣TRKA与质膜和信号内体。NRP1和GIPC1在伤害感受器中的拮抗作用提供了期待已久的非阿片类药物替代系统性抗体NGF NGF固相的替代品,用于治疗疼痛。
基因编辑技术因其在癌症、神经系统疾病、糖尿病、自身免疫性疾病、肌肉萎缩症、细菌感染 (AMR) 和心血管疾病中的应用而成为各种生物医学领域的潜在治疗工具。CRISPR 就是这样一种有价值的基因编辑工具,具有广泛的治疗应用,但在递送方面面临着重大挑战。在此,我们努力利用纳米载体和 CRISPR 的协同作用对抗上述疾病的医学应用,并阐明其临床意义,包括通过内体逃逸和环境因素(如光、pH 值和刺激)增强递送。除了重点介绍 CRISPR 纳米载体的递送策略及其特性外,我们还阐述了 CRISPR-Cas 复合物的依赖因素。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
能够自我更新和多能分化的骨骼干细胞(SSC)有助于骨发育和稳态。已经报道了不同骨骼部位的几个SSC人群。在这里,我们确定了一个形而上的SSC(MPSSC)种群,其转录景观与其他骨间充质基质细胞(BMSC)不同。这些MPSSC由位于生长板下方的SSTR2或PDGFRB + KITL-标记,仅源自肥厚的软骨细胞(HCS)。这些hc衍生的MPSSC具有体外和体内自我更新和多能量的特性,在产后产生大多数HC后代。HC特异性缺失,这是运输所需的内体分选复合物的一个组成部分,会损害HC-TO-MPSSC转换并损害小梁骨的形成。因此,MPSSC是骨髓中BMSC和成骨细胞的主要来源,支持产后小梁骨形成。
权重图显示每个体素对预测函数的相对贡献。如文献中先前讨论的那样(Schrouff 等人,2013;Schrouff 等人,2018),机器学习模型的权重图不能像标准质量单变量分析那样通过阈值化来做出区域特定推断。由于每个交叉验证折叠都会产生不同的权重向量,因此最终的权重图是折叠结果的平均值。我们使用解剖图谱总结了解剖区域中的权重图(Schrouff 等人,2013;Portugal 等人,2016;Portugal 等人,2019)。我们计算了每个大脑区域的归一化权重,作为该区域内体素绝对权重的平均值。然后,我们根据它们解释的总归一化权重的百分比对区域进行排名。我们使用了解剖自动标记 (AAL) 图谱 (Tzourio-Mazoyer 等,2002)
外泌体是 40–100 nm 的细胞外囊泡 (EV),几乎所有细胞都会主动分泌。它们起源于细胞内的多囊体,含有蛋白质、核酸和脂质。1983 年,Johnstone 等人。1,2 研究了网织红细胞转化为红细胞的过程,发现红细胞质膜中萌芽的胞内体进一步内陷形成包含各种小囊泡的多囊体。该多囊体与内质网或质膜融合,将小囊泡释放到细胞外 3,4 。1987 年,Johnstone 使用术语“外泌体”来定义该物质 5 。外泌体与细胞的内吞系统关系密切,其合成主要经过内吞、融合、外排三个步骤,并受其他因素 6 的调控。外泌体存在于几乎所有体液中,包括血浆,并发挥重要作用。
靶向蛋白质降解对于细胞的正常功能和发育至关重要。必须严格调控蛋白质降解途径,例如 UPS、自噬和内体-溶酶体途径,以确保正确消除错误折叠和聚集的蛋白质,并在细胞分化过程中调节不断变化的蛋白质水平,同时确保正常蛋白质保持完好无损。蛋白质降解途径最近也引起了人们的兴趣,因为它可以选择性地消除可能难以通过其他机制抑制的靶蛋白。2021 年 6 月 7 日至 8 日,蛋白质降解途径专家以虚拟方式参加了 Keystone 电子研讨会“靶向蛋白质降解:从小分子到复杂细胞器”。此次活动汇集了从事不同蛋白质降解途径研究的研究人员,旨在开始开发一种整体的、综合的蛋白质降解愿景,该愿景结合了所有主要途径,以了解这些途径如何导致疾病病理以及如何利用它们进行新疗法。