尽管基本面极具支撑作用(创纪录的农作物产量、强劲的全球粮食和油籽价格),该部门的 EBITDA 仍减少了一倍,至 2.19 亿美元,其中 1.45 亿美元的损失主要源于库存价值降至可实现净值以及使用权资产、商誉和 PP&E 的减值。扣除此类损失后,该部门的 EBITDA 在 2022 财年最终为 3.64 亿美元,其中 99% 是在上半年获得的,而在 2022 财年下半年,农业部门的 EBITDA 接近于零。鉴于农业业务的前景模糊,假设乌克兰的海港长期关闭,集团决定剥离经营 13.4 万公顷租赁土地的农业实体、相关基础设施和营运资金,以降低运营风险。
摘要:支持向量机 (SVM) 和核方法 (KM) 被广泛用于数据学习中的分类和回归。核是将数据映射到更高(可能是无限)维度的正定函数。通常,SVM 1 将核方法实现为子程序,将非线性数据映射到更高维度,使其变为线性可分。SVM 在此特征空间中的数据点类别之间绘制线性决策边界。本文从经典机器学习的角度回顾了核和核方法及其在量子机器学习中的可能实现。我们从核的基础开始,包括希尔伯特空间和再生核希尔伯特空间、Mercer 条件,并证明了三个广泛使用的核满足 Mercer 条件的有效性。我们回顾了两种不同的量子机器学习方法,即参数化量子电路和基于核的训练,并讨论了其中一种相对于另一种的潜在优势。本文可以帮助读者开始了解核理论和量子机器学习。
我们通过重现Hilbert空间的相关协方差操作员来考虑概率分布的分析。我们表明,这些操作员的冯·诺伊曼熵和相对熵与香农熵和相对熵的通常概念密切相关,并具有许多特性。它们与概率分布的各种牙文的有效估计算法一起出现。我们还考虑了产品空间,并表明对于张量产品内核,我们可以定义互信息和联合熵的概念,然后可以完美地表征独立性,但只有部分条件的独立性。我们最终展示了这些新的相对熵的新概念如何导致日志分区函数上的新上限,这些概念可以与变异推理方法中的凸优化一起使用,从而提供了新的概率推理方法家族。
功能性磁共振成像 (fMRI) 中的一个关键问题是从嘈杂的高维信号中估计空间活动模式。空间平滑提供了一种规范化此类估计的方法。然而,标准平滑方法忽略了神经活动的相关性在不同的脑区可能以不同的速率下降,或者在解剖或功能边界上表现出不连续性的事实。此外,这种方法没有利用这样一个事实,即相距甚远的脑区可能由于双侧对称或脑区网络组织而表现出强相关性。为了捕捉这种非平稳空间相关结构,我们引入了脑核,一种用于全脑活动模式的连续协方差函数。我们将脑核定义为从 3D 脑坐标到潜在嵌入空间的连续非线性映射,用高斯过程 (GP) 参数化。脑核将体素之间的先验协方差指定为它们在嵌入空间中位置之间距离的函数。 GP 映射以非线性方式扭曲大脑,使高度相关的体素在潜在空间中靠得很近,而不相关的体素则相距很远。我们使用静息状态 fMRI 数据估计大脑内核,并开发一种基于块坐标下降的精确、可扩展的推理方法来克服高维(10-100K 体素)的挑战。最后,我们通过多任务 fMRI 数据集的大脑解码和因子分析来说明大脑内核的实用性。
Oracle 致力于多元化和包容性。Oracle 尊重并重视多元化的员工队伍,这可以提高思想领导力和创新能力。作为我们建立更具包容性的文化以对我们的员工、客户和合作伙伴产生积极影响的计划的一部分,我们正在努力从我们的产品和文档中删除不敏感的术语。我们还意识到必须保持与客户现有技术的兼容性,并需要随着 Oracle 的产品和行业标准的发展确保服务的连续性。由于这些技术限制,我们删除不敏感术语的工作仍在进行中,需要时间和外部合作。
内核回归是一种良好的非线性回归方法,其中使用周围训练样品的加权平均值来实现测试点的目标值。通常通过将基于距离的内核函数应用于每个样品,从而获得了权重,该函数假定存在良好的距离。在本文中,我们构建了一种用于监督度量学习的新颖算法,该算法通过将剩余的重新介绍错误降至最低,从而学习了距离功能。我们表明,我们的算法使内核回归与几个基准数据集的最先进的状态进行了比较,并且我们提供了充分的实现详细信息,从而使应用程序可以应用于具有〜O(10K)内置的数据集。此外,我们表明我们的al-gorithm可以看作是PCA的监督变化,可用于降低降低和高度数据可视化。
摘要 - 在许多机器人应用中重建三维(3D)场景至关重要。机器人需要识别哪些对象及其位置和形状,以通过给定的任务精确地操纵它们。移动机器人,尤其是通常使用轻质网络在RGB图像上细分对象,然后通过深度图进行定位;但是,他们经常会遇到掩盖物体过度掩盖的分布场景。在本文中,我们通过使用非参数统计方法来完善分割错误来解决3D场景重建中的跨分割质量的问题。为了提高掩模的精度,我们将预测的遮罩映射到深度框架中,以通过内核密度估算它们的分布。然后,对异常值进行深度感知的拒绝,而无需以自适应方式进行额外的pa-rameters,以使其分布外情景,然后使用投影签名的距离函数(SDFS)进行3D重建。我们在合成数据集上验证了我们的方法,该方法显示了全景映射的定量和定性结果的改进。通过现实世界测试,结果还显示了我们方法在实体机器人系统上部署的能力。我们的源代码可在以下网址提供:https://github.com/mkhangg/refined Panoptic映射。