我们介绍了内核弹性自动编码器(KAE),这是一种基于变压器架构的自我监管的生成模型,具有增强的分子设计性能。KAE采用了两个创新的损失函数:修改后的最大平均差异(M-MMD)和加权重建(L WCEL)。 与使用传统的kullback损失(vae的Leibler损失或标准的最大平均差异)相比,M-MMD损失显着改善了KAE的生成性能。 包括加权重建损失l wcel,Kae同时实现有效的生成和准确的重建,从而允许在现有生成方法中介于VAE和自动编码器之间中间的生成行为。 KAE的进一步进步包括与有条件生成的集成,在受限的优化中设定了新的最新基准测试。 此外, KAE已经证明了其在对接应用中产生具有良好结合亲密关系的分子的能力,如Autodock Vina和Glide分数所证明的那样,表现出优于培训数据集中所有现有的候选者。 除了分子设计之外,Kae还希望在广泛的应用中逐渐解决问题。KAE采用了两个创新的损失函数:修改后的最大平均差异(M-MMD)和加权重建(L WCEL)。与使用传统的kullback损失(vae的Leibler损失或标准的最大平均差异)相比,M-MMD损失显着改善了KAE的生成性能。包括加权重建损失l wcel,Kae同时实现有效的生成和准确的重建,从而允许在现有生成方法中介于VAE和自动编码器之间中间的生成行为。KAE的进一步进步包括与有条件生成的集成,在受限的优化中设定了新的最新基准测试。KAE已经证明了其在对接应用中产生具有良好结合亲密关系的分子的能力,如Autodock Vina和Glide分数所证明的那样,表现出优于培训数据集中所有现有的候选者。除了分子设计之外,Kae还希望在广泛的应用中逐渐解决问题。
GPU(图形处理单元)通常使用CUDA或OPENCL等低级语言进行编程。尽管这些语言允许实现非常优化的软件,但由于其低级性质,它们很难编程,在该软件中,程序员必须将协调代码(即如何创建和分发)与实际的计算代码混合在一起。在本文中,我们介绍了霍克(Hok),这是一种延伸到长生不老药功能性语言的信息,该语言允许促进高阶GPU内核,从而使程序能够明确地将协调与计算分开。HOK系统为编写可以使用计算代码参数化的低级GPU内核提供了DSL(特定领域的语言)。HOK允许在主机代码中创建和引用范围的功能,包括匿名功能,以便在启动内核之前配置它们。我们证明HOK可用于实施高级抽象,例如算法 - 麦克骨骼和数组综合。我们还提出了证明HOK当前实施的可用性的实验,并表明与纯长生不老药相比,可以获得高速加速,特别是在具有大量输入的集体密集型程序中。
当模块通过术前的自我测试和加密算法自我测试(铸件)后成功启动时,该模块默认情况下以批准的操作模式运行,只能通过调用表9中的非批准服务列出的一项非批准的模式。第4节提供了有关该模块实现服务指标的详细信息。服务指标识别何时调用批准的服务。当模块以批准模式运行时,加密货币官不得配置非批准算法的使用。如果使用了未批准的算法,则该模块在未批准的模式下运行。在使用任何未批准的服务之前,加密型官员应将所有CSP归零,该CSP将模块置于非批准的操作模式中。
虽然大多数标准 C 代码都可以为 AI 引擎编译,但代码可能需要重构才能充分利用硬件提供的并行性。AI 引擎的强大之处在于它能够使用两个向量执行乘法累加 (MAC) 运算、为下一个运算加载两个向量、存储上一个运算的向量以及在每个时钟周期增加指针或执行另一个标量运算。称为内在函数的专用函数允许您定位 AI 引擎向量和标量处理器并提供几个常见向量和标量函数的实现,因此您可以专注于目标算法。除了向量单元之外,AI 引擎还包括一个标量单元,可用于非线性函数和数据类型转换。
摘要:革兰氏阴性细菌holospora ottusa是纤毛尾ca的大核特异性共生体。众所周知,这种细菌的感染诱导了宿主HSP60和HSP70基因的高水平外,并且宿主细胞同时获得热震和高盐抗性。此外,在其氨基酸序列中具有DNA结合结构域的H. ottusa特异性63-kDa的感染形式被分泌到宿主大核中后,将其分泌到宿主的大核中,并留在大核中并留在原子核中。这些事实表明,63 kDa蛋白与宿主大核DNA的结合会导致宿主基因表达的变化并增强宿主细胞的环境适应性。这种63 kDa蛋白被更名为周质区域蛋白1(PRP1),以将其与具有相似分子量的其他蛋白区分开。确认PRP1是否确实与宿主DNA,SDS-DNA PAGE和DNA Af-FILITY色谱法与小腿胸腺DNA和Caudatum DNA进行了结合,并结合了PRP1与单克隆DNA弱结合,该PRP1与促进63- kda蛋白的单克隆抗体与Caudatum dna弱结合。
Quantum机器学习是一项越来越多的研究领域,旨在执行量子计算机协助的机器学习任务。基于内核的量子机学习模型是范式涉及量子状态的范式示例,并且从这些状态之间的重叠中计算出革兰氏矩阵。在手头的内核中,常规的机器学习模型用于学习过程。在本文中,我们研究了量子支持向量机和量子内核脊模型,以预测量子系统的非马克维亚性程度。我们对幅度阻尼和相阻尼通道进行数字量子模拟,以创建我们的量子数据集。我们详细介绍了不同的内核函数,以绘制数据和内核电路以计算量子状态之间的重叠。我们表明,我们的模型提供了与完全经典模型相当的准确预测。
经典机器学习已经成功预测了物质的经典相和量子相。值得注意的是,核方法因其提供可解释结果的能力而脱颖而出,将学习过程与物理序参量明确地联系起来。在这里,我们利用量子核。它们与保真度有着天然的联系,因此可以借助量子信息工具来解释学习过程。具体来说,我们使用支持向量机(带有量子核)来预测和表征二阶量子相变。我们解释并理解了使用每个站点的保真度(而不是保真度)时的学习过程。在横向场中的 Ising 链中测试了广义理论。我们表明,对于小尺寸系统,即使在远离临界性的情况下训练,该算法也能给出准确的结果。此外,对于更大的尺寸,我们通过提取正确的临界指数 ν 来确认该技术的成功。最后,我们提出了两种算法,一种基于保真度,一种基于每个站点的保真度,用于对量子处理器中的物质相进行分类。
内核回归或分类(也称为机器学习中的加权ϵ -NN方法)对它们的简单性有吸引力,因此在数据分析中无处不在。ever,内核回归或分类的实际实现包括量化或子采样数据以提高时间效率,通常是以预测质量为代价。尽管在实践中有必要进行这种交易,但它们的统计含义通常尚未得到充分的了解,因此实际实施的实施很少。特别是尚不清楚是否可以维持内核预测的统计准确性(在某些应用中至关重要),同时改善预测时间。目前的工作提供了将内核预测与数据量化相结合的指导原则,以确保预测时间和准确性之间的良好贸易,尤其是为了近似维持香草内核预测的良好准确性。此外,我们的贸易保证是根据调整参数明确处理的,该调整参数可以作为旋钮,该旋钮根据实际需求而定于时间或准确性。在旋钮的一端,预测时间与单个最近邻居预测的顺序相同(在统计上是不一致的),同时保持一致性;在旋钮的另一端,预测风险几乎是最小的(就原始数据大小而言),同时仍降低时间复杂性。理论结果在来自一系列现实世界应用域的数据上得到了验证;特别是我们证明了理论旋钮的性能如预期的。因此,分析揭示了数据定量化方法与内核预测方法之间的相互作用,最重要的是,显式地控制了对从业者的贸易,而不是提前或使其不透明。
鲁棒性是在将深度学习模型纳入野外时要考虑的重要方面。nuber的研究一直致力于研究视觉变压器(VIT)的鲁棒性,这些研究一直是自2020年代黎明以来作为视觉任务的主流背部选择。最近,一些大型内核探手会以令人印象深刻的性能和效率卷土重来。但是,仍然尚不清楚大型内核网络是否稳健以及其稳健性的归因。在本文中,我们首先对大型内核弯曲的鲁棒性及其与典型的小核对应物的差异进行了全面评估,并在六个不同的稳健性基准数据集中进行了差异。然后分析其强大鲁棒性背后的根本因素,我们设计了来自定量和定性观念的实验,以揭示与典型的Convnets完全不同的大核转交曲线的诱因。我们的实验首次证明了纯CNN可以实现具有可比性甚至优于VIT的实质性鲁棒性。我们对遮挡方差的分析,内核注意模式和频率特征为鲁棒性提供了新的见解。代码可用:https://github.com/lauch1ng/lkrobust。