许多人类疾病源于减少或损害基因产物的突变。基因疗法作为治疗遗传疾病的一种策略,在1972年正式提出(Friedmann and Roblin,1972),引入了“基因可以是医学”的概念。在随后的几十年中,这种医学概念的实施受到了最初的兴奋,严重的挫折,兴趣复兴以及最近的临床成功(Dunbar等,2018; High and Roncarolo,2019)。尽管取得了这些成功,但是,提供功能性基因副本来代替突变的基因并不是许多疾病的完美解决方案。例如,外源基因拷贝缺乏许多对内源基因表达和功能很重要的调节元件。此外,对于功能性的致病突变,仅提供基因的野生型副本是无效的。这些局限性和其他局限性可以通过直接“编辑”突变的基因来解决,从而在自然环境中恢复基因功能。
转录后基因沉默 (PTGS) 是了解和控制植物代谢途径的有力工具,是植物生物技术的核心。PTGS 通常通过将小干扰 RNA (siRNA) 递送到细胞中来实现。标准的植物 siRNA 递送方法(农杆菌和病毒)涉及将 siRNA 编码到 DNA 载体中,并且仅适用于某些植物物种。在这里,我们开发了一个基于纳米管的平台,用于直接递送 siRNA,并在完整的植物细胞中显示出高沉默效率。我们证明纳米管成功递送 siRNA 并沉默内源基因,这归功于有效的细胞内递送和纳米管诱导的保护 siRNA 免受核酸酶降解。这项研究表明,纳米管可以实现大量依赖于 RNA 递送到完整细胞的植物生物技术应用。
摘要:我们介绍了一种高效、稳定的 87 Rb D1 线 (795 nm) 光子源,其窄带宽为 δ = 226(1) MHz。该源基于远低于阈值的单片光学参量振荡器中的非简并、腔增强自发参量下转换。该装置可高效耦合到单模光纤。实现了 η heralded = 45(5) % 的预示效率,检测到的未校正光子对数为 3.8 × 10 3 /(s mW)。对于高达 5 × 10 5 /s 的对生成率,该源发射的预示单光子具有归一化的预示二阶相关函数 g ( 2 ) c < 0.01。由于采用单片配置,该源本质上是稳定的。在没有对发射频率进行主动反馈的情况下,频率漂移量约为每小时 δ /20。我们通过施加机械应变实现了 2 GHz 以上范围内源频率的微调。
这项研究的目的是展示对处女和再生材料产生的中间物品的税收对闭环供应链(CLSC)结果(劳动,资本,资本,收益,产出,价格,价格,利润和死亡率下降)的负面影响。它提供了减轻税务效率低下的补救措施。在分析了stackelberg游戏框架后,在制定了上游和下游生产功能和回收过程之后,可以通过分析求解,并使用钢铁行业和美国汽车刺激计划的数据来获得数值结果。结果表明,最佳收集通道以及内源消费者的回报行为可以改善结果,并减少因产出税而产生的效率低下。主要政策的含义是,美国,中国,加拿大和德国政府的税收优惠计划适用于可回收物品生产的项目,这是促使其循环经济,改善环境可持续性并减少经济损失的一种合理策略。
在这里,我们回顾了修复关节软骨的组织工程的最先进。首先,我们描述了内源软骨的分子,细胞和组织学结构和功能,重点是软骨细胞,胶原蛋白,细胞外基质和蛋白聚糖。然后,我们在支架上探索体外细胞培养,讨论维持或获得软骨细胞表型所涉及的困难。接下来,我们讨论用于这些脚手架的各种化合物和设计,包括天然和合成生物材料以及多孔,纤维和多层体系结构。然后,我们报告了不同细胞支架的机械性能,以及在小动物中体内植入后这些脚手架的成功,在结构和功能上类似于天然组织的组织中。最后,我们重点介绍了该领域的未来趋势。我们得出的结论是,尽管过去15年中取得了重大的技术进步,并不断改善动物软骨修复实验的结果,但临床上有用的关节软骨再生的临床有用植入物的发展仍然是一个挑战。
定期间隔间隔的短质体重复序列(CRISPR)和与CRISPR相关的蛋白质(CAS9)系统是ARCHEA和细菌使用的一种适应性免疫反应防御机制,用于降解前遗传材料。该机制可以用于其他功能,包括用于哺乳动物系统的基因组工程,例如基因敲除(KO)(KO)(1,2)和基因激活(3-6)。CRISPR Activation Plasmid products enable the identification and upregulation of specific genes by utilizing a D10A and N863A deactivated Cas9 (dCas9) nuclease fused to a VP64 acti- vation domain, in conjunction with sgRNA (MS2), a target-specific sgRNA engineered to bind the MS2-P65-HSF1 fusion protein (6).这种协同激活介质(SAM)转录激活系统提供了一个强大的系统,以最大程度地激活内源基因表达(6)。
摘要:即使使用最先进的技术,例如基因编辑,现代植物繁殖仍然是一个耗时且昂贵的过程。因此,迫切需要开发植物特质操纵和植物保护的替代方法。RNA干扰(RNAi)是一种由天然存在的双链RNA(DSRNA)和小RNA(SRNA)介导的保守细胞机制,可以靶向mRNA用于破坏或减少转录的mRNA。在这里,我们回顾了基于RNAi的技术的潜力,称为喷雾诱导的基因沉默(SIGS),是在植物或病原体控制中操纵内源基因表达的繁殖的替代或辅助。SIGs可能在减少害虫或病原体影响的情况下特别有用,从而改善生物胁迫并提高作物的农艺性能。关键字:RNA干扰,小RNA,SIGS,DSRNAS
Bruno Pitard 1,Irène Pitard 2 许多疾病源于某种蛋白质的表达不足或表达缺陷。对于其中一些来说,缺失的蛋白质正在循环中,并且可以在外源输送时被细胞吸收。在这种情况下,治疗最初包括施用从人体组织中提取的治疗性蛋白质。随后,基因工程引入相应基因后,可以通过细胞发酵生产蛋白质。对于许多其他疾病来说,缺失的蛋白质无法通过外源方式提供。因此,细胞本身内源性地生产治疗性蛋白质是必要的。信使RNA(mRNA)技术与其前身DNA一样,旨在补充细胞内产生治疗性蛋白质所需的遗传信息。然而,与 DNA 疗法不同的是,mRNA 转移允许目的蛋白质的瞬时表达,这在许多疾病中是一种优势。然而,控制治疗性 mRNA 编码的蛋白质的数量、质量和时空调控对于这种方法的发展来说是一个重大挑战。
摘要 — 研究了 T-DNA 插入拟南芥 At3g58450 基因(该基因编码与发芽相关的通用应激蛋白 (GRUSP))的 3'-UTR 区域的影响。研究发现,在长日照条件下,该突变会延迟 grusp-115 转基因株系的开花转变,这是因为与野生型植物 (Col-0) 相比,内源生物活性赤霉素 GA1 和 GA3 的含量降低。外源 GA 加速了这两个株系的开花,但没有改变 Col-0 和 grusp-115 之间开花开始时间的差异。除了 GA 代谢的变化之外,grusp-115 显然在诱导开花信号的实现方面存在干扰。开花整合因子 FLOWERING LOCUS T ( FT ) 和开花抑制因子 FLOWERING LOCUS C ( FLC ) 的基因表达结果证实了这一点,它们是关键的开花调节因子,作用相反。我们假设,由于 FLC 表达上调,FT 表达水平较低也会影响 grusp-115 表型的形成。
我收到的,我对您在五月谈论的“内源经济政策”或国家固定的多汁会议感兴趣。遗憾的是,巴西没有气候引起争议,该争议发展了要在其中提出的论文,尤其是卓越的中央论文,即:“一方面,危机使国家固定在国家,另一方面,对国家的固定化,阻止了危机解决方案。”并不是说您认为这篇论文可以像建议一样生存一个争议。相反,将强调这样一个事实,即在我们目前的权力帕克所实现的舞台上,就像在权力的前面协议的类似阶段一样,国家的渐进停止是克服危机的前提,因为客观地,国家利用其所有的衰落来阻止危机的措施克服危机的措施,而不是宣传他们的危机。这发生在独立之前的危机中,废除式革命和30的革命。在当前物种中,虽然该州有一定的动作余地,但它将在外部债务扩张的道路上进行,但增加了