基因复制是生物创新的强大来源,从而导致了经历多种命运的寄生基因。寄生虫基因之间的冗余是重复的果实,和intsmaintenancevoltolution timehaslongbeensidereda paradox的有趣结果。冗余也可以被称为“遗传学家的噩梦”:它阻碍了基因组编辑结果的可预测性,并限制了我们将基因型与表型联系起来的能力。酵母和植物中的遗传研究表明,由于功能丧失而导致的古代冗余重复作用剂量扰动的能力取决于基因表达的重编程,这是一种称为主动补偿的现象。从考虑驱动冗余进化稳定性的化学计量限制的考虑开始,本综述旨在提供对重复项之间主动补偿机制的见解,这可能是针对破坏寄生虫依赖性的,这是植物功能研究的下一个领域。
摘要:移动飞机控制面的动力已从手动产生(由飞行员通过杆和连杆传输)发展到电传输(通过电线)以操作控制面执行器。已经开发了各种液压、电磁和机电结构来提供必要的动力并保持预期的冗余度。过去几十年来,已经提出了许多飞机执行器系统设计,但尚未进行全面的审查。这篇评论论文旨在通过对为各种飞机开发的执行器系统设计进行严格的审查来填补这一空白。审查重点是飞机执行器系统设计,即:电液执行器系统、机电执行器系统和冗余执行系统中的力对抗效应。审查中严格分析和讨论了每个执行器系统的意义和工作原理。本文还评估了提出的解决力或扭矩总和架构中的力对抗均衡(或力对抗取消)的解决方案。本文还讨论了飞机执行器系统中冗余执行器系统发展的未来趋势,以减少力对抗效应。
在高峰时段,一名行人穿过一条街道,经常看起来并听潜在的危险。当他们听到几个不同的角时,他们将鸣喇叭的汽车定位,并决定是否需要修改其运动计划。行人如何使用此听觉信息在视觉空间中挑选相应的汽车?这样的分布式表示形式的集成称为分配问题,必须解决它以在跨感觉模态范围内整合不同的表示形式。在这里,我们识别并分析了分配问题的解决方案:在相关大脑区域成对的一个或多个常见刺激特征(例如,在视觉和听觉系统中都表示对汽车空间位置的估计。我们表明该解决方案的可靠性如何取决于刺激集的不同特征(例如,集合的大小和刺激的复杂性)以及分裂代表的细节(例如,每个刺激表示的精度和重叠信息的量和重叠信息的量)。接下来,我们在生物学上合理的接收场代码中实现了该解决方案,并显示该代码使用的神经元和尖峰数量的约束迫使大脑在局部和灾难性错误之间进行权衡。我们表明,当有许多尖峰和神经元可用时,尽管有分配错误的风险,但在多个大脑区域中代表单个感觉方式的刺激可以更可靠地完成。最后,我们表明,即使以两种不同的表示格式接收输入,馈送神经网络也可以学习对分配问题的最佳解决方案。我们还讨论了有关人类工作记忆文献中分配错误的相关结果,并表明我们理论的几个关键预测已经得到支持。
摘要本文解决了轨道机器人机器人的服务和组装中的重要挑战,这是为了克服机器人关节上的力量/扭矩的饱和挫折,并在捕获后阶段中,同时与未控制的大型Angular和线性动力进行了目标飞船,同时控制目标航天器。作者提出了一种基于两个鲁棒和效果控制算法的新颖解决方案:最佳控制分配(OCA)和非线性模型预测性控制(NMPC)。这两种算法都旨在最大程度地减少关节扭矩,航天器执行器矩,接触力和复合冗余系统的矩,其中包括通过双n-数度空间机器人机器人操纵器抓住的常见有效载荷(目标航天器)安装在Chaser spacececraft上。OCA算法仅使用当前状态和系统动力学小型量化二次成本函数,但NMPC还考虑了未来状态估计值和对指定预测范围的控制输入。它在计算上更多地参与,但在减少关节扭矩方面提供了优异的结果。迄今为止,将MPC应用于机器人技术的文献主要集中在线性模型上,但双臂配位是高度非线性的,并且在双臂协调中没有MPC应用。提出的离散技术(非线性模型)具有优雅和简单性的确切实现(非线性模型),但仍考虑了双臂协调系统的完整非线性模型。它在计算上非常有效。计算机仿真结果表明,所提出的算法有效地工作,最小扭矩,接触力和矩实现。开发的算法在跟踪问题方面也非常有效。
摘要:线粒体DNA(mtDNA)特别容易受到体细胞诱变的影响。潜在机制包括DNA聚合酶γ(POLG)误差和诱变剂(例如活性氧)的作用。在这里,我们研究了瞬时过氧化氢(H 2 O 2脉冲)对培养的HEK 293细胞MtDNA完整性的影响,并应用了Southern印迹,超深的短读和长阅读测序。在野生型细胞中,在H 2 O 2脉冲后30分钟,出现线性mtDNA片段,代表双链断裂(DSB),其末端的特征是短GC拉伸。完整的超涂层mtDNA物种在治疗后2-6小时内重新出现,并在24小时后几乎完全回收。与未经处理的细胞相比,H 2 O 2处理的细胞中BRDU掺入较低,这表明快速恢复与mtDNA复制无关,而是由单链断裂(SSB)快速修复和DSB生成的线性片段的降解所驱动的。遗传失活在外丝酶中降解的遗传降解有效POLG P.D274A突变细胞导致线性mtDNA片段的持续性,对SSB的修复无影响。总而言之,我们的数据突出了SSB修复和DSB降解的快速过程与氧化损伤后MTDNA的重新合成较慢之间的相互作用,这对MTDNA质量控制具有重要意义,对MTDNA质量控制和潜在的体细胞mTDNA删除。
彼得的公共服务包括任命美国国际经济政策咨询委员会,以及Ras Al Khaimah高级材料中心的科学顾问委员会。他是伍德罗·威尔逊国际学者公共服务奖的获奖者,也是美国律师协会高级国际任命委员会的前联席主席。他是伍德罗·威尔逊国际学者公共服务奖的获奖者,也是美国律师协会高级国际任命委员会的前联席主席。
摘要:五十年前,苏苏姆·ohno(Susumu Ohno)提出了著名的C值悖论,该悖论指出,基因组的物理大小,即DNA的量与生物体的复杂性之间没有相关性,并突出了基因组降低的问题。DNA已被描述为“垃圾或selfer dNA”。垃圾DNA的有争议的概念仍然可行。rye是对该概念的正确性和科学意义的另一个测试的便捷主题。栽培黑麦的基因组,塞莱·瓦雷·L。被认为是部落小毛虫的物种中最大的一部分之一,因此它是平均被子植物的基因组及其最接近进化邻居的基因组,例如大麦,荷尔德人,荷尔德人(大约30-35%)和二型麦田(Triticum),triticum,triticum,triticum,triticum,triticum of triticum of triticum,triticum,and triticum of diplitium of triticum,and。审查提供了对黑麦染色体各个区域的结构组织的分析,并描述了有助于其在进化过程中大小增加的分子机制以及这些过程中涉及的DNA序列的类别。是真核基因组冗余概念发展的历史,并讨论了此问题的当前状态。
免责声明 本信息由美国政府机构赞助,作为工作记录而编写。美国政府及其任何机构或其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
本文研究了三重模块冗余 (TMR) 实现对系统可靠性的影响。为此,对具有 RISC-V 架构的微处理器进行了模拟,分别采用了 TMR 实现和未采用 TMR 实现。在模拟中,注入了单事件瞬变 (SET) 和多事件瞬变 (MET)。此外,还模拟了采用 TMR 实现的晶体管故障。TMR 应用于处理器的 Multi/Div 块,故障将注入这些三重块的输入端。将使用注入故障数与传播故障数之比来比较采用和未采用 TMR 的系统的性能。当系统仅注入 SET 时,不采用 TMR 的系统的比例从 0.058 到 0.389,具体取决于发生 SET 的概率,而采用 TMR 的系统则根本不传播任何故障。如果注入 MET,则不带 TMR 的系统性能会更好,比率在 0.069 和 0.291 之间,而带 TMR 的系统比率在 0 和 0.036 之间。TMR 实施可显著降低错误传播的概率,但如果多事件瞬变击中多条类似的线路,它仍可能失败。为了解决这个问题,应该实施其他形式的冗余。
深度神经网络 (DNN) 是图像、语音和文本处理的最新技术。为了解决训练时间长和能耗高的问题,自定义加速器可以利用稀疏性,即零值权重、激活和梯度。提出的稀疏卷积神经网络 (CNN) 加速器支持使用不超过一个动态稀疏卷积输入进行训练。在现有的加速器类别中,唯一支持双面动态稀疏性的是基于外积的加速器。然而,当将卷积映射到外积时,会发生与任何有效输出都不对应的乘法。这些冗余笛卡尔积 (RCP) 降低了能源效率和性能。我们观察到在稀疏训练中,高达 90% 的计算都是 RCP,它们是由 CNN 训练后向传递期间大矩阵的卷积产生的,用于更新权重。在本文中,我们设计了一种机制 ANT 来预测和消除 RCP,与外积加速器结合使用时可以实现更高效的稀疏训练。通过预测超过 90% 的 RCP,在使用 DenseNet- 121 [ 38 ]、ResNet18 [ 35 ]、VGG16 [ 73 ]、Wide ResNet (WRN) [ 85 ] 和 ResNet-50 [ 35 ] 的 90% 稀疏训练中,ANT 比类 SCNN 加速器 [67] 实现了 3.71 倍的几何平均速度提升,能耗降低了 4.40 倍,面积增加了 0.0017 平方毫米。我们将 ANT 扩展到稀疏矩阵乘法,以便同一个加速器可以预测稀疏全连接层、Transformer 和 RNN 中的 RCP。