症状出现日期或若无症状则为检测采集日期 = 第 0 天 从第 0 天起在家待 5 天,并与家中的其他人隔离 第 6 天 - 如果:24 小时内无发烧(< 100.4 度),且未使用可能掩盖发烧的药物,并且症状显着(80-90%)改善,则可以返回工作岗位 从第 0 天起 10 天内,在家中和公共场所与他人在一起时始终佩戴合适的口罩 向主管或单位指定人员报告阳性检测结果
• 2022 年《芯片和科学法案》第 19221 条将中国、伊朗、朝鲜和俄罗斯列为国家安全关注国家。 • 教育部关于《1965 年高等教育法案》第 117 条的机构合规性报告指出,中国、卡塔尔、沙特阿拉伯和阿拉伯联合酋长国是美国高等教育机构的主要外国资金来源(占 2020 年报告的 66 亿美元总额的 10 亿美元以上)。根据这份报告,来自中国、卡塔尔和沙特阿拉伯的资金主要来自这些国家政府的工具,这可能带来更高的风险。加州大学
决策树是最受欢迎的监督模式之一,因为它们的解释性和知识表示类似于人类的推理。常用的决策树归纳算法基于贪婪的自上而下策略。尽管已知这些方法是一种有效的启发式方法,但所得树仅在局部最佳,并且往往具有过于复杂的结构。另一方面,最佳决策树算法尝试立即创建整个决策树以实现全局最优性。我们通过设计针对决策树的生成模型在这些方法之间提出建议。我们的方法首先通过使用预训练的决策树模型来学习潜在的决策树空间。然后,它采用了一种遗传程序来探索这种潜在空间,以找到具有良好预测性能的紧凑型决策树。我们将我们的建议与覆盖树诱导方法,最佳方法和结合模型进行了比较。结果表明,我们的建议可以产生准确而浅的,即可解释的决策树。
目前还有许多少年甚至未成年人患有糖尿病。这是由于生活方式不健康。除了食用的食物和饮料还含有大量糖,这种疾病通常也是由于缺乏日常活动而引起的。那么,非常有必要进行此类研究以预防并帮助治疗受糖尿病影响或患有糖尿病风险的患者。然后,为了帮助卫生部门,该研究是使用决策树算法方法进行的,并使用RapidMiner工具进行了。在使用决策树算法方法中,在糖尿病的分类中使用了77.34%,精度,精度,即75.08%,召回97.60%和F1得分为0.8486,这表明使用糖尿病方法使用糖尿病的数据来预测使用糖尿病的数据的准确性,该准确性是使用糖尿病方法的准确性是84.86%。使该方法具有相当高的准确性。关键字:数据挖掘,分类,糖尿病,决策树,快速矿工摘要 - 糖尿病是一种疾病,不仅会攻击年龄的人,而且目前许多青少年甚至未成年人已经患有糖尿病。这是由于生活方式不健康。除了含有大量糖的食物和饮料外,这种疾病还因缺乏日常活动而引起。因此,人们认为这种研究非常颈动作,还可以帮助治疗已经患有糖尿病或患有糖尿病风险的患者。为了帮助您在卫生部门的帮助,使用决策树算法方法进行了这项研究,并使用RapidMiner工具进行了研究。在使用决策树算法方法中,在糖尿病的分类中,准确性结果为77.34%,精度为75.08%,召回97.60%,F1得分为0,8486,这表明使用决策Tree Tree Tree Tree Tree Tree Tree方法的精确度预测了精确的准确性。因此,人们认为该方法具有相当高的准确性。关键字:数据挖掘,分类,决策树,糖尿病,快速矿工
机器学习是一种新兴技术,用于了解数据结构并将数据拟合到可用于未来预测的模型中。机器学习模型的作物产量预测性能可能不仅取决于模型,还取决于用于训练学习模型的数据集中的参数。农业是印度经济的支柱。作物产量预测是一个重要的农业问题。我们提出了一个模型,该模型通过使用各种监督机器学习技术分析地区(假设特定地区的天气和土壤参数相同)、州、季节、作物类型等因素,重点是提前预测作物产量。这有助于农民提前了解作物产量,从而计划和选择产量更高的作物。
GT )量子查询其中 T 是决策树的深度,G 是猜测算法的最大错误数。在本文中,我们给出了一个简单的证明,并将这个结果推广到具有非二进制输入和输出字母表的函数 f :[ ℓ ] n → [ m ]。我们进行这种推广的主要工具是最近为非二进制函数开发的非二进制跨度程序和对偶对手界限。作为我们主要结果的应用,我们提出了几个量子查询上界,其中一些是新的。特别是,我们证明了有向图 G 的顶点的拓扑排序可以用邻接矩阵模型中的 O(n 3 / 2)量子查询完成。此外,我们证明了邻接表模型中最大二分匹配的量子查询复杂度上限为 O(n 3 / 4 √ m + n)。
COLLEGE MAJORS THAT REQUIRE CALCULUS Actuarial Science, Accounting, Agribusiness, Anthropology, Architecture, Astronomy, Astrophysics, Aviation (Bachelor of Science), Biology, Biochemistry, Bioinformatics, Biomedical Science, Botany, Business (Bachelor of Science), Chemistry, City and Regional Planning, Computer Science (Bachelor of Science), Data Analytics (Bachelor of Science), Earth Science, Economics, Engineering, Environmental Science, Finance, Forensic Science, Forestries, Fisheries, and Wildlife, Geology, Information Science, Logistics Management, Marketing (Bachelor of Science), Mathematics, Math or Science Teacher, Microeconomic Theory, Neuroscience, Nutrition Science (Bachelor of Science), Operations Management, Physics, Physiological Optics, Public Health, Pre-Health Professional (Doctor, Veterinarian,药房),心理学(理学学士),房地产和城市分析
描述具有组成响应和欧几里得预测指标的非线性回归。首先使用添加剂记录比率转换对组成数据进行转换,然后使用Rahman R.,Otridge J.和Pal R.(2017),的多元随机森林。
尽管对文本和图像数据进行了深度学习的成功,但基于树的集合模型仍然是使用异质表格数据的机器学习的最新。但是,由于其高灵活性,因此非常需要基于表格的基于梯度的方法。在本文中,我们提出了Grande,Gra Die n t-d ecision树E nSembles,这是一种使用端到端梯度下降的努力学习的新方法。Grande是基于树形合奏的密集表示,该代表允许使用直线操作员使用backpropaga,以共同优化所有模型参数。我们的方法结合了轴对齐的分裂,这是对TAB-ular数据的有用电感偏差,并具有基于梯度的优化的灵活性。此外,我们引入了一个高级实例的加权,以促进单个模型中简单和复杂关系的学习代表。我们对预定义的基准进行了广泛的评估,并与19个分类数据集进行了广泛的评估,并证明我们的方法在大多数数据集上都优于现有的梯度增强和深度学习框架。该方法可在:https://github.com/s-marton/grande