不同于大多数工程材料,拉胀材料具有负的泊松比。拉胀材料用于医学、体育科学、传感器和执行器等各个领域。拉胀结构由多个并联和串联的单元组成。本文通过分析提取了拉胀单元和结构的等效刚度。研究了拉胀单元的角度和梁长等几何参数对拉胀单元和结构等效刚度的影响。使用 Abaqus 软件对拉胀结构进行模拟,验证了提取的方程。在本研究中,使用数值模拟来研究拉胀单元参数对其等效质量的影响。研究结果表明,改变拉胀单元的几何参数会影响拉胀结构的振动行为。此外,还研究了拉胀结构几何参数对泊松比的影响。
我们提出了一种新颖的神经可变形模型 (NDM),旨在从二维稀疏心脏磁共振 (CMR) 成像数据中重建和建模心脏的三维双心室形状。我们使用混合可变形超二次曲面对双心室形状进行建模,该超二次曲面由一组几何参数函数参数化,能够进行全局和局部变形。虽然全局几何参数函数和变形可以从视觉数据中捕捉到总体形状特征,但可以学习局部变形(参数化为神经微分同胚点流)来恢复详细的心脏形状。与传统可变形模型公式中使用的迭代优化方法不同,可以训练 NDM 来学习此类几何参数函数、来自形状分布流形的全局和局部变形。我们的 NDM 可以学习以任意尺度加密稀疏心脏点云并自动生成高质量的三角网格。它还可以隐式学习不同心脏形状实例之间的密集对应关系,以实现准确的心脏形状配准。此外,NDM 的参数直观,医生无需复杂的后处理即可使用。大型 CMR 数据集上的实验结果表明,NDM 的性能优于传统方法。
本文旨在对2024铝板铆接接头的疲劳寿命和疲劳裂纹扩展路径进行数值研究。为此,根据现场观测,获得影响疲劳寿命的参数。研究了相关的几何参数,例如铆钉杆长度、孔径和尺寸公差,以及铆钉的位置模式和铆钉接头的材料。在本研究中,使用有限元方法进行建模以计算等效塑性应变。为此,使用三维弹塑性模型进行模拟。从本研究中的有限元方法获得的信息使得将铆钉放置在这种类型的接头中以用于航空航天工业等高安全性结构成为可能。鉴于2024铝板裂纹扩展问题的重要性,掌握了问题的几何和物理参数,目标是实现铆接接头裂纹扩展和疲劳寿命的精确路径。采用边界元法对试样进行疲劳裂纹扩展模拟,利用边界元法确定了不同加载模式下的应力强度因子,结果表明几何参数和铆钉材料对铝板疲劳裂纹有显著影响。
抽象的常规光子设备具有设计依赖性的静态光学特性,包括材料的折射率和几何参数。但是,它们仍然对应用具有有吸引力的光学响应,并且已经在各个领域的设备中被利用。水凝胶光子学已通过为外部刺激提供主要可变形的几何参数而成为活性光子体领域的一种有希望的解决方案。在过去的几年中,已经进行了各种研究以获得具有可调光学特性的刺激响应光子设备。在此,我们关注基于水凝胶的光子学和水凝胶的微/纳米化技术的最新进步。特别是,用于水凝胶光子设备的制造技术被归类为膜的生长,光刻术(PL),电子束光刻(EBL)和纳米印刷光刻(NIL)。此外,我们还提供了对可变形水凝胶光子学的未来方向和前景的见解,以及它们的潜在实际应用。
摘要 -- 磁力齿轮与机械齿轮一样,在不同速度和扭矩之间转换动力;然而,磁力齿轮的非接触特性提供了比机械齿轮固有的潜在优势。使用遗传算法优化了不同温度下一系列齿轮比下的磁力齿轮。在不同的转子上以及切向和径向磁化磁体上使用不同等级的磁体材料可以稍微增加比扭矩,相对于使用单一磁体材料的设计。高极数转子需要比低极数转子磁体材料具有更高矫顽力的磁体材料,尤其是对于齿轮比较大的设计。虽然温度升高会导致可实现的比扭矩呈指数衰减,每升高 1 摄氏度复合减少约 0.4%,但温度不会显著影响最佳几何参数,主要影响最佳材料。齿轮比显著影响最佳几何参数,并会影响最佳磁体材料。此外,还采用遗传算法通过 3D 有限元分析来表征堆叠长度的影响。堆叠长度较短的设计有利于采用更薄的磁铁和更高的极数,并且可能能够使用矫顽力较低的磁铁材料。
本文旨在了解定向材料特性对折纸结构机械响应的作用。我们将 Miura-Ori 结构视为目标模型,因为它们具有可折叠性和负泊松比 (NPR) 效应,广泛应用于减震器、灾难庇护所、航空航天应用等。传统的 Miura-Ori 结构由各向同性材料(铝、丙烯酸)制成,其刚度和 NPR 等机械特性已为人们所熟知。然而,这些响应如何受到碳纤维增强聚合物 (CFRP) 复合材料等定向材料的影响,需要更深入了解。为此,我们研究了 CFRP 复合材料中的纤维方向和排列以及 Miura-Ori 的几何参数如何控制此类结构的刚度和 NPR。通过有限元分析,我们表明,与铝等各向同性材料制成的 Miura-Ori 结构相比,由 CFRP 复合材料制成的 Miura-Ori 结构可以实现更高的刚度和泊松比值。然后通过回归分析,我们建立了不同几何参数与相应机械响应之间的关系,并进一步利用该关系发现 Miura-Ori 结构的最佳形状。我们还表明,在 Miura-Ori 结构中的各个复合材料特性中,剪切模量是控制上述机械响应的主要参数。我们证明,我们可以通过找到几何和材料参数来优化 Miura-Ori 结构,从而产生最刚度和最可压缩的结构。我们期望我们的研究成为设计和优化更复杂的折纸结构的起点,其中结合了复合材料。
摘要 - FEW模式纤维是接收器自由空间光学通信的重要组成部分,以获得可实现的高耦合效率。根据自由空间光学通信链接到几种模式纤维的理论耦合模型是基于一组尺度适应的Laguerre-Gaussian模式提出的。发现各种模式的效率在存在大气湍流或随机抖动的情况下的行为不同。基于此模型,获得了最佳耦合几何参数,以最大程度地提高少数模式纤维所选模式的耦合效率。研究了随机抖动的沟通性能。表明,少数模式纤维比单模纤维具有更好的位率率性能,尤其是在高信噪比的比率方面。
摘要 - 基于线性电嵌入离合器材料和性能的最新进步,本文使用一个简单的模型研究了自我增强的选举旋转离合器的可行性。该设计旨在在性能受到传统电磁或磁性离合器提供的扭矩和扭矩与质量比的限制的应用中提供改进。自我增强设计的性能与设备的几何参数有关,因此通过将系统参数建模为具有随机属性来检查离合器配置的鲁棒性。根据陀螺仪平衡辅助设备的离合器要求进行了一个设计示例。分析预测,与行业领先的旋转离合器相比,提出的设计可以实质性改善扭矩与质量比率。索引术语 - 关键,选举,自我增强,磨损机器人技术
这项工作中使用的化学物质是商业购买的。元素分析是通过勒克瑙CDRI的微分析确定的。使用溴化钾托盘,将FTIR光谱记录在BrukerαTFT-IR分光光度计上。使用Varian Carry 5000,UV/VIS/NIR分光光度计记录电子光谱。使用TBAP用TBAP作为支撑电解质,用Epsilon Basi循环电压表确定化合物的电化学性能。使用电气操作的熔点装置对化合物的分解温度进行监测,其加热能力高达360ºC。理论研究,即研究化合物的分子几何参数和振动特性,前沿分子轨道(FMOS)以及分子静电势表面(MEP)(MEPS)使用B3LYP/ LANL2DZ组合进行了密度功能理论(DFT)。使用高斯09软件包进行DFT计算。