内分泌干扰化学物质(EDC)是我们环境中存在的一类广泛的分子,怀疑通过干扰内源配体的合成,转运,降解或作用而怀疑会在内分泌系统中引起不良反应。表征环境化合物及其潜在的细胞靶标之间的有害涉及分性以及体内鲁棒的稳定性,体外和计算机筛选方法对于评估大量化学物质的毒性潜力很重要。在这种情况下,正在开发允许内分泌干扰物和环境风险评估活动预测的计算机辅助技术。这些技术必须能够应对各种数据,并将原子水平的化学与细胞,器官和生物体的生物活性联系起来。定量结构 - 活动关系方法因毒性问题而流行。他们通过许多分子描述子将化合物的化学结构与生物活性相关联(例如,分子量和参数,以说明疏水性,拓扑或电子特性)。化学结构分析是第一步;但是,对分子间相互作用和细胞行为进行建模也将是必不可少的。EDCS目标的三维晶体结构数量的增加提供了大量的结构信息,可用于使用对接和评分程序来预测其与EDC的相互作用。(内分泌学160:2709 - 2716,2019)在本综述中,我们描述了使用配体和靶向属性来预测内分泌干扰物活动的各种计算机辅助方法。
摘要 组合信号是指导情境相关细胞行为的关键。在胚胎发育、成体稳态和疾病期间,骨形态发生蛋白 (BMP) 充当二聚体来指导特定的细胞反应。BMP 配体可以形成同二聚体或异二聚体;然而,获得每种形式的内源性定位和功能的直接证据已被证明具有挑战性。在这里,我们利用精确的基因组编辑和通过蛋白质结合剂进行的直接蛋白质操作来剖析果蝇翅成虫盘中 BMP 同二聚体和异二聚体的存在和功能相关性。这种方法原位揭示了 Dpp (BMP2/4)/Gbb (BMP5/6/7/8) 异二聚体的存在。我们发现,尽管 Gbb 由翅成虫盘的所有细胞产生,但仅由表达 Dpp 的细胞分泌。 Dpp 和 Gbb 形成异二聚体的梯度,而在内源性生理条件下,Dpp 和 Gbb 同二聚体均不明显。我们发现异二聚体的形成对于在发育中的翅膀中获得最佳信号传导和长距离 BMP 分布至关重要。这些结果表明 Dpp/Gbb 异二聚体是上皮模式形成和生长所需的活性信号。
心力衰竭 (HF) 是一种复杂且多因素的疾病。最近,人们在理解 HF 发病机制所涉及的潜在分子过程方面取得了进展。这些科学进步揭示了分泌蛋白组的重要性。本文全面概述了分泌蛋白组在 HF 的发病、进展以及改善诊断和治疗干预的可能性方面的科学现状。我们探讨了各种类型的分泌因子,包括新型蛋白质、生长因子、细胞因子和微小 RNA。我们还讨论了它们如何影响 HF 中的细胞信号传导、血管生成、纤维化、病理性心脏重塑和炎症。此外,我们还研究了分泌蛋白组在心脏保护和心脏毒性中的作用。本综述强调了分泌蛋白组在生物标志物发现方面的潜力。这可能有助于更好地诊断 HF、进行风险分层、监测和治疗。本综述还讨论了研究分泌因子作用的困难以及分泌蛋白组研究的新方向。它强调了其作为新治疗方法和生物标志物开发目标的潜力。
这项研究报告说,副甲韧带(PTMS)被脑丘脑茎/祖细胞(HTNSC)分泌,以抑制受体细胞(例如纤维细胞)的衰老。释放后,PTM迅速转移到各种细胞类型的核中,包括神经元GT1-7细胞和不同的外围细胞,并有效地转移到体内各个大脑区域的神经元核中。值得注意的是,脑神经元还会产生和释放PTM,并且由于神经元种群很大,因此对于在脑脊液中维持PTM很重要,该PTM可以进一步转移到血液中。与其他几个大脑区域相比,下丘脑对长距离PTMS转移更强,支持该功能中关键的下丘脑作用。在生理学中,衰老与PTMS的产生和大脑转移的下降有关,并且研究了低丘脑与海马的PTMS敲低,显示出对神经行为生理学的不同贡献。总而言之,大脑是通过PTM的分泌和核转移的内分泌器官,以及下丘脑 - 该功能的大脑编排在生理学中具有保护性,并且针对衰老相关的疾病具有抵消性。
Wang,M.,Yan,L.,Li,Q.,Yang,Y.,Turrentine,M.,March,K。,&Wang,I。 (2020)。 间充质干细胞分泌可改善体内冷存储后的供体心脏功能。 胸腔和心血管手术杂志。 https://doi.org/10.1016/j.jtcvs.2020.08.095Wang,M.,Yan,L.,Li,Q.,Yang,Y.,Turrentine,M.,March,K。,&Wang,I。(2020)。间充质干细胞分泌可改善体内冷存储后的供体心脏功能。胸腔和心血管手术杂志。https://doi.org/10.1016/j.jtcvs.2020.08.095
披露JJJ:Biolinerx和Pfizer的咨询。JK:Fulcrum,Ecor-1,Bausch,Watkins,Lourie,Roll&Chance,Chiesi,Beam,Novartis和Bluebird Bio,Inc。的咨询;曾担任董事会成员或在基西,诺华,蓝鸟生物,公司和糖基的咨询委员会任职;获得了Beam,Novartis,Bluebird Bio,NHLBI,CDC,HRSA,Novo Nordisk和Takeda的研究资金;并从新兴疗法解决方案,GLG Pharma,GuidePoint Global和Optum United Health获得了酬金。ril:没有什么可披露的。AC,MAK,AL,LP,ES-W和FJP:Bluebird Bio,Inc。的现任员工和股票持有人的现有员工AAT:咨询咨询公司,并从Bluebird Bio,Inc。,Beam,Editas和CRISPR/Vertex获得了研究资金,并获得了研究资金;在过去24个月中,全球血液疗法的平等剥离;并从诺华获得了研究资金。
高性血症。-h 2 - 受体拮抗剂:它们以(tidine)结尾。主要药物是cimetidine(您必须记住这种药物)。其他药物包括:Famotidine - Nizatidine - ranitidine。行动机制:竞争性可逆抑制
1 韩国大田韩国科学技术院 (KAIST) 化学与生物分子工程系;2 韩国大田韩国科学技术院生物科学系;3 韩国首尔国立大学兽医学院生物化学系;4 韩国首尔国立大学比较医学疾病研究中心 (CDRC);5 韩国首尔国立大学 BK21 PLUS 创意兽医科学研究计划和兽医科学研究所;6 韩国大田韩国科学技术院生物与脑工程系;7 德国马丁斯里德马克斯普朗克生物化学研究所计算系统生物化学研究组;8 韩国大田韩国科学技术院电气工程系;9 韩国首尔国立大学医院内科系;10 韩国首尔国立大学医学院癌症研究所; 11 韩国首尔国立大学医学院首尔国立大学医院病理学系;12 韩国城南市首尔国立大学盆唐医院胸心血管外科;13 韩国大田韩国科学技术研究院健康科学技术研究所 (KIHST);14 韩国大田韩国科学技术研究院生物世纪研究所 (KIB);15 韩国大田韩国科学技术研究院生物过程工程研究中心和生物信息学研究中心
背景:评估胰岛素抵抗和胰岛素分泌受损是否是使用全国人群代表数据来增强数据隐私的Koreans中糖尿病的有用预测。方法:本研究分析了韩国国家健康与营养检查调查(KNHANES)2007- 2010年和2015年没有糖尿病> 40岁的人的数据,以及2015年的国家健康保险服务国家健康筛查队列(NHIS-HEALS)。由于隐私问题,这些数据库无法使用直接标识符链接。因此,我们将10个合成数据集发电,然后与NHI-Heals进行统计匹配。胰岛素分解(HOMA-IR)和稳态模型的稳态模型评估分别用作胰岛素抵抗和胰岛素分泌功能的指标,以及在NHIS-HEALS中捕获的糖尿病分泌功能。结果:在统计匹配10个合成knhanes和NHIS-Heals数据集后,分析中包括了4,580(范围为4,463至4,761)的中位数(范围为4,463至4,761)。在5。8年的平均随访期间,中位数为4.7%(范围为4.3%至5.0%)的参与者患有糖尿病。与参考低– HOMA-HOMA/HOMA-HOMA-β组相比,高– Homa-ir/Low-– HOMA-β组具有糖尿病的风险最高,其次是高– Homa-ir/High-Homa-homa-β组和低HOMA-HOMA-HOMA-HOMA-HOMA/LOW-HOMA/LOW-HOMA-β组(中位调节危险比[中位数危险率[ranges]:3.36至3.36至1.86至1.86至1.86至1.86至1.86 [1.05] [1.86] 3.22]和1.68 [0.93至3.04]。结论:胰岛素抵抗和胰岛素分泌受损是韩国人口中糖尿病的强大预测指标。通过统计匹配结合横截面合成和基于纵向索赔的队列数据而构建的反重新组件可能是研究糖尿病自然历史的可靠资源。
糖尿病是一种疾病,其中两种病理学(减少胰岛素分泌和胰岛素抵抗)导致高血糖症,导致生活质量降低,并因并发症而缩短了预期寿命。长期以来,人们一直认为糖尿病中的高血糖是胰岛素无法降低血糖水平的主要因素。然而,近年来,它引起了人们的注意,糖尿病的高血糖与胰高血糖素的异常分泌有关,这具有激活肝脏中的糖素途径。据报道,缺乏分泌胰腺胰腺α细胞或胰高血糖素受体的小鼠完全抑制胰岛素分泌的小鼠根本不会提高血糖水平。还已经表明,将胰高血糖素受体引入缺乏胰高血糖素受体的小鼠会增加血糖水平[1]。此外,众所周知,与健康个体相比,2型糖尿病患者的胰高血糖素分泌异常增加[2]。从上面的角度来看,除了胰岛素作用不足之外,还提出,由于胰高血糖素的异常分泌而导致肝脏中的糖异生增加也是2型糖尿病中高血糖状态的主要原因[3]。