Key words : voice interaction; safety regulation question bank; quick find; text feature 中图分类号 : TM08 文献标识码 : A 文章编号 : 1008-6226 (2023) 12-0027-03
当人体无法很好地使用胰岛素时,糖尿病是一种疾病。 从长远来看,在这种情况下,葡萄糖水平会损害人体的器官,即使是人体中器官和组织功能的失败,可能会导致并发症甚至死亡。 根据国际糖尿病联合会的说法,2021年,由糖尿病造成的死亡人数为236,7.1.11千人,年龄在20-79岁左右。 当前技术的发展可以帮助人类获取信息并预测疾病,并可以通过使用分类技术的机器学习方法来帮助治疗的发展,并为了防止某些糖尿病更深的疾病。 作者将使用的分类算法预测糖尿病是决策树算法,支持向量机算法和幼稚的贝叶斯算法。 Div>数据糖尿病预测收集了多达2768个数据,每种算法都有70%的培训数据和30%的数据测试。 具有最高评估值的算法是幼稚的贝叶斯算法,平均准确度为78%,精度为77%,召回78%,F1得分率为77%。糖尿病是一种疾病。从长远来看,在这种情况下,葡萄糖水平会损害人体的器官,即使是人体中器官和组织功能的失败,可能会导致并发症甚至死亡。根据国际糖尿病联合会的说法,2021年,由糖尿病造成的死亡人数为236,7.1.11千人,年龄在20-79岁左右。当前技术的发展可以帮助人类获取信息并预测疾病,并可以通过使用分类技术的机器学习方法来帮助治疗的发展,并为了防止某些糖尿病更深的疾病。作者将使用的分类算法预测糖尿病是决策树算法,支持向量机算法和幼稚的贝叶斯算法。Div>数据糖尿病预测收集了多达2768个数据,每种算法都有70%的培训数据和30%的数据测试。算法是幼稚的贝叶斯算法,平均准确度为78%,精度为77%,召回78%,F1得分率为77%。
标准化分类法使资产密集型工业组织能够系统地衡量和跟踪资产层次结构中不同级别的资产效率和性能。拥有结构良好的分类法还允许公司利用新兴的数据驱动技术,例如预测和健康管理 (PHM),通过直接将资产映射到特定于设备共性的分析内容,例如故障模式。然而,维护管理系统中设备分类法和编码结构的复杂性和使用对于不同的组织来说差别很大。本文介绍了一种数据驱动的方法,用于从维护管理系统中的设备记录中识别设备分类法。该方法将基于机器学习和基于规则的方法结合到混合的人机回路工作流程中,从而能够快速一致地将设备映射到标准分类法中。通过一个案例研究来展示所提出的方法在设备分类分类方面的性能和挑战。
文件 1,《危险废物处理、分类和处置的最低要求》规定了废物分类系统。根据废物固有的毒理学特性,将废物分为两类:一般废物和危险废物。根据废物在处置时可能造成的风险,使用危险等级进一步细分危险废物。这样,危险性较低的废物与危险性极高的废物区分开来。危险等级为 1 或 2 的废物属于非常危险或极其危险,而危险等级为 3 或 4 的废物属于中等危险或低危险。根据废物分类适当设定预处理和处置的要求。由于危险废物的预防和最小化以及处理、运输和储存的重要性,本文简要介绍了危险废物的预防和最小化。
保密和过度保密对作战的影响众所周知,正如时任参谋长联席会议副主席的约翰·E·海顿将军在 2020 年所强调的那样:“如果你拥有的一切都盈利,你就无法威慑人们。” 1 相比之下,采购流程作为支持功能在幕后运行,需要原始保密机构 (OCA) 层面的倡导,以确保保密对速度、成本和技术解决方案的影响与保护国家机密和某些能力的作战需要得到同等重视。对于仍需要保密的项目,政策、法规、技术和政府激励措施的变化将为与速度、成本和进入广泛行业基础相关的问题提供解决方案。
大多数自然领域可以通过多种方式表示:我们可以根据其营养内容或社会角色对食物进行分类,动物的分类学群体或其生态壁ni,以及乐器根据其分类学cate-cate-gore-gore或社会用途。对人类分类进行建模的先前方法在很大程度上忽略了交叉分类的问题,专注于学习一个单一的类别系统,这些类别可以解释所有功能。跨类别提出了一个困难的概率:我们如何在不首先知道该类别要解释的情况下推断类别?我们提出了一个新型模型,该模型表明人类跨类别是关于多个类别系统及其解释的特征的联合推断的结果。我们还为交叉分类行为形式化了两个常见的替代解释:第一个特征和对象 - 第一个方法。第一种方法表明,交叉分类是注意力程序的结果,其中特征是通过注意机制选择的,并且类别是第二个。对象 - 第一个方法表明,跨属性是重复的,顺序解释特征的连续性尝试,其中类别是第一个派生的,然后重新解释的特征。我们提出了两组模拟和实验,以测试模型对人类分类的预测。2011 Elsevier B.V.保留所有权利。我们发现,基于共同推论的方法为人类分类行为提供了最佳拟合,我们建议对人类类别学习的完整说明需要纳入类似于这些能力的东西。
传统上,电磁信号(例如通信和雷达信号)已使用针对特定信号类型的手工制作的特征提取器进行了分类。然后,在分析或统计学上得出低维特征空间中的决策边界。但是,对无线电频谱的快速自主理解对于诸如频谱干扰监测,无线电故障检测,动态频谱访问以及各种调节和防御目的等应用至关重要。因此,尽可能多地自动化这些过程是由于疲劳引起的效率和误差。机器学习(ML)方法,尤其是基于人工智能的方法,在增强电磁频谱操作(EMSO)信号识别的敏感性和准确性方面具有重要潜力,尤其是在短时观察的情况下。
1 西孟加拉邦古尔班加大学图书馆与信息科学系研究学者 2 泰米尔纳德邦马杜赖索拉马莱工程学院管理学系副教授 3 艾哈迈达巴德圣泽维尔学院(自治校)图书馆管理员 4 泰米尔纳德邦丁迪古尔 Dt 帕拉尼-15. Chinakalayamputhur Arulmigu palaniandavar 女子艺术学院图书馆管理员 5 中央图书馆和图书馆与信息科学系图书馆管理员兼主任,G.T.N.艺术学院(自治校),丁迪古尔 624005,泰米尔纳德邦,印度。6 印度卡纳塔克邦贝尔高姆 Visvesvaraya 科技大学 Kalpataru 理工学院计算机科学与工程系教授 590018 1 soumendu.roy@ugb.ac.in、2 profvmr123@gmail.com、3 moradiashivam@gmail.com、4 shanthaapac@gmail.com、5 aravindlibrarian@gtnartscollege.ac.in 和 6 santhukit@gmail.com
随着人们的物质生活水平继续提高,房屋的类型和数量 - 持有垃圾的类型和数量迅速增加。因此,迫切需要开发一种合理有效的垃圾分类方法。这对于资源回收和环境改进非常重要,并有助于生产和经济的可持续发展。但是,由于大量模型参数,现有的基于深度学习的垃圾图像分类模型通常会遭受低分类精度,鲁棒性不足和慢速检测速度的影响。为此,提出了一个新的垃圾图像分类模型,并以Resnet-50网络为核心架构。特别是,首先提出了一个冗余特征融合模块,使该模型能够充分利用有价值的功能信息,从而提高其性能。同时,该模块从多尺度功能中滤除了冗余信息,从而减少了模型参数的数量。第二,Resnet-50中的标准3×3卷积被替换为深度分离的卷积,从而显着提高了模式的计算效率,同时保留了原始卷积结构的特征提取能力。最后,为了解决阶级不平衡问题,加权因素被添加到焦点损失中,旨在减轻类不平衡对模型性能的负面影响并增强模型的鲁棒性。trashnet数据集的实验结果表明,所提出的模型有效地减少了大小的数量,提高检测速度并达到94.13%的准确性,超过了现有的基于深度学习的废物图像分类模型的绝大多数,表明其固定实用值。
摘要:心理负荷(MW)评估在各类人机交互任务中得到广泛研究。现有的MW分类研究大多使用非侵入式脑电图(EEG)帽采集脑电信号并识别MW水平。但MW任务刺激的大脑激活区域对于每个受试者来说并不相同。使用来自所有电极通道的EEG信号来识别MW可能并不合适。本文首先建立EEG节律能量热图,直观展示四种EEG节律能量随时间、EEG通道和MW水平的变化趋势。从所呈现的热图中可以看出,这种变化趋势因受试者、节律和通道而异。在此基础上,提出了一种双阈值方法来选择MW评估的敏感通道。使用个性化选择通道的EEG信号,分别称为正敏感通道(PSC)和负敏感通道(NSC),并使用支持向量机(SVM)算法进行MW分类。结果表明,个性化敏感通道的选择普遍有助于提高MW分类的性能。