点击购买,资源将自动在新窗口打开.
获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
传统上,电磁信号(例如通信和雷达信号)已使用针对特定信号类型的手工制作的特征提取器进行了分类。然后,在分析或统计学上得出低维特征空间中的决策边界。但是,对无线电频谱的快速自主理解对于诸如频谱干扰监测,无线电故障检测,动态频谱访问以及各种调节和防御目的等应用至关重要。因此,尽可能多地自动化这些过程是由于疲劳引起的效率和误差。机器学习(ML)方法,尤其是基于人工智能的方法,在增强电磁频谱操作(EMSO)信号识别的敏感性和准确性方面具有重要潜力,尤其是在短时观察的情况下。
主要关键词