抽象的穿梭RNA结合蛋白协调基因表达的核和细胞质步骤。SR家族蛋白调节细胞核中的RNA剪接,其中包括SRSF1(包括SRSF1)的子集,核和细胞质之间的穿梭,影响后切割过程。然而,这一点的生理意义尚不清楚。在这里,我们使用基因组编辑来敲入SRSF1中的核保留信号(NRS),以创建具有仅保留在细胞核中的SRSF1蛋白的小鼠模型。srsf1 NRS/NRS突变体显示出小体型,脑积水和免疫力精子,这些特征与纤毛缺陷有关。我们观察到了一部分mRNA的子集的翻译减少,并降低了参与多重生成的蛋白质的丰富度,并且在该小鼠模型中得出的细胞和组织中纤毛超微结构和运动性的破坏。这些结果表明,如此处观察到的,在高细胞需求的背景下,在高细胞需求的背景下,SRSF1穿梭用于重新编程基因表达网络。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2021年8月6日发布。 https://doi.org/10.1101/2021.08.05.455347 doi:biorxiv Preprint
a Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel b SpliSense Therapeutics, Jerusalem, Givat Ram, Israel c Institut Necker Enfants Malades, INSERM U1151 Université de Paris, Faculté de Médecine Necker, Paris, France d Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama在伯明翰,伯明翰,伯明翰,美利坚合众国E埃默里大学,埃默里大学,亚特兰大,佐治亚州亚特兰大,美利坚合众国,小儿肺部和睡眠单位,儿科部,哈达萨·希伯鲁大学医学中心,耶路撒冷,耶路撒冷,以色列G中心,以色列G分子医学,澳大利亚梅尔多克大学,澳大利亚,澳大利亚,澳大利亚,澳大利亚,梅尔多克大学 University of Western Australia, Nedlands, Western Australia, Australia i Hadassah-Hebrew University Medical Center, Department of Pediatrics and Cystic Fibrosis Center, Jerusalem, Israel j Cystic Fibrosis Center, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France k Université de Paris, France l European Reference Network Lung
[a]Martínez-Martínez等人提供的EHS的实验测量的底物滥交水平。1。[b]基于Arpigny和Jaeger分类的家族35。[C] TopScore预测的全蛋白误差估计比较模型15。[d]在Pymol中“ Alignto”确定的PDB结构的模型之间的均方根偏差;在Å。[E] EHS的催化活性残基。 [F]基于预测的H type2,EHS具有EHS的全局灵活性。 [g]基于预测的RC IJ,邻居的EHS催化活性残基的局部灵活性。[E] EHS的催化活性残基。[F]基于预测的H type2,EHS具有EHS的全局灵活性。 [g]基于预测的RC IJ,邻居的EHS催化活性残基的局部灵活性。[F]基于预测的H type2,EHS具有EHS的全局灵活性。[g]基于预测的RC IJ,邻居的EHS催化活性残基的局部灵活性。
摘要:大豆固氮消耗大量能量,导致根瘤和未接种根的能量代谢和线粒体活动存在显著差异。尽管线粒体转录本的 C 到 U RNA 编辑和内含子剪接在植物物种中很常见,但它们与根瘤功能的关系尚不清楚。在本研究中,我们进行了 RNA 测序以比较大豆根瘤和根中线粒体基因的转录本谱和 RNA 编辑。在线粒体转录本上共鉴定出 631 个 RNA 编辑位点,其中 12% 或 74 个位点在从根瘤、剥离根和未接种根中分离的转录本中存在差异编辑。这 74 个差异编辑位点中有 8 个位于 matR 转录本上,其中 RNA 编辑程度在根瘤样本中最高。还检查了线粒体内含子剪接的程度。根瘤和剥离根中几个内含子的剪接效率高于未接种根。这些包括 nad1 内含子 2 / 3 / 4、nad4 内含子 3、nad5 内含子 2 / 3、cox2 内含子 1 和 ccmFc 内含子 1。在根瘤中还观察到 nad4 内含子 1 的更高剪接效率、更高的 NAD4 蛋白丰度以及超复合物 I + III 2 的减少,尽管这些观察结果之间的因果关系需要进一步研究。
meCP2是成熟神经细胞中丰富的蛋白质,它与含甲基化胞嘧啶的DNA序列结合。MECP2基因中的突变引起严重的神经疾病RETT综合征(RTT),引发对基本分子机械性的深入研究。已经提出了多个功能,其中之一涉及剪接中的调节作用。在这里,我们利用高质量转录组数据集的最新可用性来定量探测MECP2对替代剪接的潜在影响。使用可以同时捕获线性和非线性关联的各种机器学习方法,我们表明MECP2级别差异很大,对三种不同系统中的替代剪接具有最小的影响。替代剪接显然也不对DNA甲基化水平的心理变化无动于衷。我们的结果表明,剪接的调节不是MECP2的主要功能。他们还强调了多变量定量分析在制定生物学假设中的重要性。
腺苷到肌苷的 RNA 编辑和前 mRNA 剪接主要在转录过程中发生并相互影响。在这里,我们使用缺乏两种编辑酶 ADAR(ADAR1)或 ADARB1(ADAR2)之一的小鼠来确定 RNA 编辑对不同组织剪接的转录组范围影响。我们发现 ADAR 对剪接的影响比 ADARB1 高 100 倍,尽管这两种酶都靶向相似数量的底物,并且有很大的共同重叠。一致地,差异剪接区域经常包含 ADAR 编辑位点。此外,催化失活的 ADAR 也会影响剪接,表明 ADAR 的 RNA 结合会影响剪接。相反,ADARB1 编辑位点在差异剪接区域的 5' 处富集。这些 ADARB1 介导的编辑事件中的几个会改变剪接共识序列,因此强烈影响某些 mRNA 的剪接。差异编辑位点和差异剪接位点之间的显著重叠表明,剪接的进化选择受到组织特异性编辑的调控。
发育突触重塑对于形成精确的神经回路很重要,并且其破坏与自闭症和精神分裂症等神经发育障碍有关。小胶质细胞修剪突触,但这种突触修剪与重叠和并发神经发育过程的整合仍然难以捉摸。粘附G蛋白偶联受体ADGRG 1 / GPR 56以细胞类型的方式控制脑发育的多个方面:在神经祖细胞中,GPR 56调节皮质层压层,而在少突甘胶祖细胞细胞中,GPR 56在GPR 56中控制发育的骨髓和肌蛋白。在这里,我们表明小胶质细胞GPR 56以时间和电路依赖性方式在几个大脑区域保持适当的突触数。磷脂酰丝氨酸(PS)在突触前元素上以域特异性方式结合GPR 56,而GPR 56的小胶质细胞特异性缺失导致突触增加,这是由于PS + PES +突触前输入的小胶质细胞吞吐量降低而导致的。非常明显,小胶质细胞介导的突触修剪需要特定的GPR 56的剪接同工型。我们的目前数据在复杂的神经发育过程的背景下提供了小胶质细胞GPR 56介导的突触修剪的配体和同工型特定机制。
前 mRNA 的选择性剪接对细胞和组织特异性蛋白质表达模式的多样性有很大影响。全球转录组分析表明,90% 以上的人类多外显子基因都是选择性剪接的。剪接过程的改变会导致错误剪接事件,从而导致遗传疾病和病理,包括各种神经系统疾病、癌症和肌营养不良症。近几十年来,研究有助于阐明调节选择性剪接的机制,在某些情况下,还揭示了这些机制的失调如何导致疾病。由此产生的知识使我们能够设计出新的治疗策略来纠正剪接衍生的病理。在这篇综述中,我们主要关注针对剪接的治疗方法,并重点介绍基于纳米技术的基因传递应用,以解决核酸疗法面临的挑战和障碍。
剪接是去除前 mRNA 片段(称为内含子)同时将片段(称为外显子)连接在一起形成成熟 mRNA 的过程 1 。可变剪接是一种现象,其中基因的不同外显子片段剪接在一起形成具有不同序列的成熟 mRNA,大大扩展了单个基因编码的蛋白质库。可变剪接过程深深嵌入基因调控网络中,并控制 90% 以上的人类基因的基因异构体表达 2 。鉴于其普遍性,RNA 剪接失调与许多疾病有关也就不足为奇了 3 – 5 。RNA 测序是一种强大的工具,可用于“读取”转录组并识别不同细胞类型、条件和疾病中可变剪接的变化 2、5、6。但是,缺乏一种可扩展的工具来精确且可逆地“编写”可变剪接。尽管针对特定基因异构体进行降解的异构体特异性 RNAi 或异构体特异性 cDNA 过表达可用于扰乱异构体水平 7、8,但可能无法保持靶基因的整体表达水平。虽然剪接转换反义寡核苷酸 (ASO) 可有效扰乱剪接,甚至已进入临床试验 9,但它们的成本对于大规模研究而言过高,并且需要筛选许多设计以确定有效的靶序列。此外,由于 ASO 本质上是瞬时的,因此它们不适用于需要稳定或可诱导表达的用例。RNA 调节蛋白与异源 RNA 结合结构域的融合,例如 Pumilio/PUF、MS2 外壳蛋白 (MCP)、PP7 外壳蛋白 (PCP) 和 λ N,已经允许人工调节 RNA 过程 10 – 15。例如,通过工程化的 PUF 结构域将富含丝氨酸或富含甘氨酸的结构域束缚到外显子上,分别诱导它们的包含或排除12。然而,这些人工 RNA 效应分子需要蛋白质工程或在靶 RNA 中插入人工标签,并且依赖于短识别序列,这限制了靶向灵活性和特异性。遗传学和表观遗传学领域极大地受益于基于 RNA 引导的 DNA 靶向 CRISPR-Cas 系统的技术的爆炸式增长 16。我们,以及其他一些人,已经成功地实施了分子工具来修改目标 DNA 位点的遗传序列或表观遗传状态 17-25。CRISPR 介导的 DNA 水平基因编辑方法已被用于扰乱剪接(在剪接位点进行碱基编辑/插入缺失或切除整个外显子)19-21。然而,由于共享同一 DNA 片段的 DNA 顺式调控元件(例如转录因子结合位点)可能受到干扰,因此这些方法可能会产生混淆效应。此外,使用 CRISPR 介导的 DNA 缺失或突变方法很难促进外显子的插入。首次证明了使用 CRISPR 靶向 RNA 的激动人心的前景,即将最常用的 DNA 靶向 SpCas9 转化为 RNA 核酸酶“ RCas9 ”,并添加了 PAMmer - 一种寡核苷酸,当与靶 RNA 结合时,会模拟 SpCas9 结合所需的原型间隔区相邻基序 (PAM) 19 。虽然将 RCas9 靶向重复序列不需要 PAMmer 26 ,但重复序列仅占所有 RNA 顺式调控元件的一小部分。继 RCas9 首次报道之后,其他 CRISPR/Cas9 系统也被发现可在体外与单链 RNA 结合 27 、 28 ,但缺乏它们在哺乳动物细胞中体内 RNA 结合的证据。最近发现了来自细菌 CRISPR 系统的 RNA 引导的 RNA 核酸酶 29 – 31 。它们对哺乳动物细胞的适应不仅允许可编程的 RNA 降解 29、31、32,而且还可用于设计新功能,例如 RNA 序列编辑 30、活细胞 RNA 成像 32 和诊断 33。特别是,CasRx 是从 Ruminococcus flavefaciens 中分离出来的最近鉴定出的 IV-D 型 CRISPR-Cas 核糖核酸酶
