摘要提交截止日期:2024 年 4 月 15 日 录取通知:2024 年 4 月 30 日 扩展摘要/论文:2024 年 5 月 15 日 初步计划:2024 年 6 月 1 日 早鸟注册截止日期:2024 年 6 月 30 日 最终计划:2024 年 9 月 1 日 会议和现场注册:2024 年 9 月 23 日至 26 日 联系人 Dr.-Ing. Jasminka Starcevic 柏林工业大学 力学研究所, Sekr. C8-4 Str. des 17. Juni 135 D-10623 Berlin 德国 电话:+49 (30) 314 21 493 传真:+49 (30) 314 72 575 电子邮件:j.starcevic@tu-berlin.de
描述此主题建立在材料的机制上,以为学生提供有关变形,压力,压力,压力和强度对材料和组件的影响,这对于理解如何改善机械设计必不可少的材料和组件。学生的分析和解决问题技能是通过分析影响(包括非弹性变形,参考轴的方向以及材料失败的)的影响来发展的。使用有关材料的知识,学生评估对材料的影响,控制材料特性的机制以及使用数学计算和技术来确定简单组件上的应力和菌株。总体而言,学生发展了选择合适材料并改善机械设计的能力。
p \ rileureodvwv col1a1 col3a1 poftn acta2 hslfdugldo fhoov wt1 shulf \ whv mcam cspg4 cspg4ϯ
手部接收感觉刺激并执行运动指令,这些指令整合到日常任务的各种功能操作中。手指运动笨拙低效、力量协调性和力量较差、患手运动控制感觉缺陷是患者最常见的现象。因此,我们的研究团队开发了一系列手部功能控制训练系统,以探索执行功能任务时的力量模式特征,并对功能姿势下的手指力量控制进行训练和评估。通过互动游戏提高患者的积极性,同时整合视觉和听觉反馈以获得更好的干预效果。对于腕管综合征患者,他们在不同任务需求中以更大的手指力量抓握,与较弱的成对手指相关性和特定手指上的力量变化较大相关。此外,还开发了定制设计的计算机化评估和再教育生物反馈原型,用于分析手部抓握表现并监测训练对感觉障碍且无运动缺陷的中风患者的手部协调性的影响。最后,对轻度认知障碍患者的训练显著提高了手部灵活性和认知功能,这与先前的研究结果一致,即精细运动表现可以区分认知障碍患者和健康人。
17。p.8.35,马里恩:几乎是圆形轨道(即ϵ ϵ1)被认为是应用小扰动的圆形轨道。然后,径向运动的频率由等式8.89给出。考虑一种情况,即力定律为f(r)= - k/ r n(其中n是整数),并表明apsidal角为π/√3 -n。因此,表明封闭的轨道通常仅用于谐波振荡器力和反向平方法的力(如果排除n的值等于或小于-6的值)。
U= (mm w )ach - 势能;mm w – 置换溶剂(水)的额外质量;h – 离心管底部以上高度;ac – 离心机加速度。测量蛋白质密度下降 1/e 10(指数项消失)时的高度 SH10
图1。各种石墨烯纳米力学谐振器。(a)双重夹紧谐振器。(b)完全夹紧的谐振器。(c)带有通向通道的完全夹紧谐振器。(d)使用SU-8聚合物的其他层完全夹紧谐振器。(e)蹦床形的谐振器。(f)H形谐振器。(g)单独夹紧谐振器。(h)三个双重夹紧的谐振器串联。(i)哑铃形的谐振器,中间有一个排气通道。(J)大量的鼓声谐振器。(k)语音晶体通过将悬浮的石墨烯膜变成周期性图案。(l)语音晶体将石墨烯薄片转移到预制的立柱阵列中。(a)经许可复制。[19] 2011年版权所有,施普林格。(b)经许可复制。[57]版权所有2018,美国化学学会。(c)根据创意共享CC-BY国际许可证的条款复制。[61]版权所有2020年,作者,由Springer Nature出版。(d)经许可复制。[26]版权所有2013,施普林格。(e)根据创意共享CC-BY国际许可证的条款复制。[64]版权所有2019,作者,由施普林格自然出版。(f)经许可复制。[65]版权所有2015,美国化学学会。(g)经许可复制。[66]版权所有2012,施普林格。(h)根据创意共享CC-By International许可证的条款复制。[23]版权所有,作者,由美国国家科学院出版。(i)根据创意共享CC-NC-ND国际许可证的条款复制。[67]版权所有2021,作者,由美国化学学会出版。(J)经许可复制。[68]版权所有2011,施普林格。(k)根据创意共享CC-BY国际许可证的条款复制。[35]版权所有2021,作者,由美国化学学会出版。(l)经许可复制。[36]版权所有2021,美国化学学会。
摘要。提出了一种连续介质的非经典梯度模型来描述在岩石样品受到动态载荷作用下观察到的杨氏模量的分散性。该模型的现象学参数是根据对杨氏模量随外部载荷频率和幅度变化的实验研究结果的分析确定的。关键词:梯度模型、动态弹性模量、非平稳载荷、材料非均匀性致谢。感谢俄罗斯科学基金会 (项目编号 19-19-00408) 的支持。引用:Guzev MA、Riabokon EP、Turbakov MS、Poplygin VV 用于描述材料动态弹性模量的非经典模型//材料物理和力学。2021,V. 47. N. 5. P. 720-726。 DOI:10.18149/MPM.4752021_6。1. 简介工程师用来创建各种结构的材料通常是异质的,研究人员长期以来一直在分析它们在变形过程中的行为。专家兴趣的差异首先与解决不同质量水平的问题的需求有关。在这些水平上,需要各种数学模型来描述材料的行为。最近,连续介质的非经典模型 [1-3] 被积极使用。在非经典模型中,应该区分梯度模型 [4-8]。梯度模型最早是在 [9] 中提出的。它的现代应用允许获得阐明宏观物体描述的解,其中经典弹性理论的应力和变形具有特征。例如,在 [10,11] 中开发的梯度模型变体允许构建非奇异解来描述具有结构的材料。在考虑岩石行为的非经典效应时也会使用梯度模型 [12,13]。 [14] 表明,在线性近似中,非欧几里得模型和梯度模型在描述材料中的区域分裂现象时会得出相同的结果。
长期存在的更大计算能力的探索已经存在。自1960年代以来,现代电脑中的晶体管一直遵循摩尔定律。然而,随着硅晶体管继续扩大规模,它们面临挑战,例如由于有限的亚阈值挥杆,与高温操作不兼容以及缺乏可重新选择性,诸如州外泄漏功率的增加。因此,正在研究新型的计算设备以解决这些问题。随着微型/纳米制作技术的进步,Me-Chanical计算已成为晶体管的有前途的替代品,具有通过利用自由dom的机械性程度来利用超级功耗,高温兼容性和可构性的优势。尤其是微型/纳米机电系统(MEMS/NEMS)技术现在正在积极探索以实现未来的计算设备。可以根据其操作方式(图1):联系人(主要是开关/继电器)和非接触模式(通常是谐振器),我们可以在下面进行更详细的讨论。基于MEMS/NEMS开关/继电器的机械计算。MEMS开关已经研究了数十年。多年来,已经对具有不同驾驶机制的MEM/NEM开关的不同设计进行了启发[1],静电MEMS/NEMS开关受到了最广泛的探索。静电内存和NEM开关通常包含可移动电极(梁或膜)和静态反电极,并由小空气或真空间隔隔开。在OFF状态下,这种物理分离可确保零泄漏电流。除了接近零泄漏电流和突然开关外,NEM开关对苛刻的环境具有比金属氧化物 - 氧化型局部效果(MOSFET)更具抵抗力。基于这些SIC NEMS开关的SIC纳米线开关和逻辑逆变器可以可靠地函数可靠地函数,而MOSFET会失败