图 1. 突变线粒体 DNA (mtDNA) 的遗传特征和致病表达模型。人们认为,mtDNA 中的突变会随着衰老而积累。仍有许多未解之谜,比如这些突变是如何遗传和增加的,从而导致线粒体功能下降,甚至随着时间的推移导致细胞和个体功能下降(详情见正文)。
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
基于变压器的大语言模型(LLMS)在各种自然语言处理任务中都具有令人印象深刻的表现。为LLM推断为生成长含量而构成挑战,这是由于瞬态状态的巨大内存足迹(称为键值(KV)缓存),该状态以序列长度和批处理大小缩放。在本文中,我们提出了Infinigen,这是一种针对Longext Genertion量身定制的新型KV缓存管理框架,该框架协同与现代卸载基于卸载的推理系统合作。Infinigen利用了关键见解,即可以通过对当前层的最小彩排以及查询权重的一部分和后续层的关键缓存进行最小化的彩排来推测,对于计算变压器中后续注意力层至关重要的重要洞察力。这使我们只能预取基本的KV缓存条目(不提供所有内容),从而在基于卸载的LLM服务系统中减轻主机内存中的提取开销。我们对几种代表性LLMS的评估表明,与先前的KV高速缓存管理方法相比,Infinigen将基于现代卸载系统的总体性能提高了3.00倍,同时提供了更好的模型准确性。
基于区域的管理工具(ABMT),包括海洋保护区(MPA)通常是静态的,无法反映海洋生态系统的动态现实。海洋生态系统的特征是它们的体现不断变化,这进一步由人为应激源(尤其是气候变化)扩大。ABMT和MPA的前提是以环境平衡的隐式假设,因为它们的边界和管理框架通常被固定,并且很难进行调整。本文试图在静态保护策略与海洋生态系统的深刻和天生的动态性质之间揭开张力。它进一步旨在推进动态ABMT的概念,提出了对ABMT治理的综合概念化,这种概念更容易应对复杂海洋生态系统提出的复杂海洋生态系统动态的挑战类型。的动态被广泛地解释为包含三个维度:空间,具有流动和可调的保护措施;规范性,表示一种动荡和自适应的管理框架,该框架利用生态和管理阈值作为适应性,及时和前瞻性方法来增强管理结果的发起人;和制度,即,充分灵活而动态的机构机制负责监督ABMT实施。在对动态ABMT的全面概念化之后,本文解决了以下问题,管理着海洋的法律框架是否可以维持这种动态的海洋治理模式。
尽管神经辐射场 (NeRF) 在图像新视图合成 (NVS) 方面取得了成功,但 LiDAR NVS 仍然基本上未被探索。以前的 LiDAR NVS 方法采用了与图像 NVS 方法的简单转变,同时忽略了 LiDAR 点云的动态特性和大规模重建问题。鉴于此,我们提出了 LiDAR4D,这是一个可微分的 LiDAR 专用框架,用于新颖的时空 LiDAR 视图合成。考虑到稀疏性和大规模特性,我们设计了一种结合多平面和网格特征的 4D 混合表示,以由粗到细的方式实现有效重建。此外,我们引入了从点云衍生的几何约束来提高时间一致性。对于 LiDAR 点云的真实合成,我们结合了光线丢弃概率的全局优化来保留跨区域模式。在 KITTI-360 和 NuScenes 数据集上进行的大量实验证明了我们的方法在实现几何感知和时间一致的动态重建方面具有优越性。代码可在 https://github.com/ispc-lab/LiDAR4D 获得。
生成的零拍学习(ZSL)学习了一个生成器来合成看不见类的视觉样本,这是推进ZSL的有效方法。然而,现有的发电方法依赖于高斯噪声和预定义的语义原型的条件,这限制了仅在特定的看到类中优化的发电机,而不是对每个视觉实例进行特征,从而导致概括不良(例如,过度适用于可见的类)。为了解决这个问题,我们提出了一种新颖的视觉启动动态语义原型方法(称为VADS),以增强发电机来学习准确的语义 - 视觉映射,以充分利用视觉效果的知识为语义条件。详细说明,VADS由两个模块组成:(1)视觉吸引域知识学习模块(VDKL)了解视觉特征的偏见和全局先验(称为域的视觉知识),这些偏见取代了纯净的高斯噪声,以提供更丰富的先验噪声信息; (2)以视觉为导向的语义更新模块(VOSU)根据样本的视觉表示更新语义原型。最终,我们将它们的输出作为动态语义原型串联,作为发电机的条件。广泛的实验表明,我们的VAD在三个突出的数据集上实现了上升的CZSL和GZSL prounperces,并且在Sun,Cub和Awa2上分别胜过其他最先进的方法,其平均分别增加了6.4%,5.9%,5.9%和4.2%。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
摘要 - 为了充分利用移动操纵机器人的功能,必须在大型未探索的环境中自主执行的长途任务。虽然大型语言模型(LLMS)已显示出关于任意任务的紧急推理技能,但现有的工作主要集中在探索的环境上,通常集中于孤立的导航或操纵任务。在这项工作中,我们提出了MOMA-LLM,这是一种新颖的方法,该方法将语言模型基于从开放式摄影场景图中得出的结构化表示形式,随着环境的探索而动态更新。我们将这些表示与以对象为中心的动作空间紧密地交织在一起。重要的是,我们证明了MOMA-LLM在大型现实室内环境中新型语义交互式搜索任务中的有效性。最终的方法是零拍摄,开放式摄影库,并且可以易于扩展到一系列移动操作和家用机器人任务。通过模拟和现实世界中的广泛实验,与传统的基线和最新方法相比,我们证明了搜索效率的显着提高。我们在http://moma-llm.cs.uni-freiburg.de上公开提供代码。
摘要 - 云计算中的主要关注点之一是如何使用密码学有效地管理数据访问控件。虽然具有挑战性,但加密方法是个人和企业都希望采用的一种有吸引力的解决方案。为了解决这个问题,本研究提出了一种称为CryptSecure的潜在解决方案。CryptSecure的主要目标是通过密码启用动态访问控制。为了撤销访问权限,按CryptSecure指示修改云中的加密数据。此技术涉及由文件和吊销代码组成的对称代码系统。发生撤销时,授权实体将新的吊销代码上传到云时,该文件会加上附加的安全层加密。这触发了加密代码系统中的相应调整。
2田纳西州盖恩斯维尔,佛罗里达州盖恩斯维尔大学, 2植物科学(IBG-2),ForschungszentrumJülichGmbh,德国尤利希,德国尤利希,4,自然科学系4,麦格理大学,麦奎里大学,澳大利亚,新南威尔士州,新南威尔士州,新南威尔士州,纽约州,伊斯兰教少校,是经济分析。 National Key Laboratory of Ef fi cient Plant Carbon Capturing, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China, 7 Queensland Alliance for Agriculture and Food Innovations, The University of Queensland, St Lucia, QLD, Australia, 8 Institute of Biology II, Faculty of Biology, University of Freiburg,德国弗莱堡,9个综合生物信号研究中心(CIBSS),德国弗莱堡大学,德国弗莱堡大学,加利福尼亚大学,加利福尼亚大学戴维斯分校的植物科学系102植物科学(IBG-2),ForschungszentrumJülichGmbh,德国尤利希,德国尤利希,4,自然科学系4,麦格理大学,麦奎里大学,澳大利亚,新南威尔士州,新南威尔士州,新南威尔士州,纽约州,伊斯兰教少校,是经济分析。 National Key Laboratory of Ef fi cient Plant Carbon Capturing, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China, 7 Queensland Alliance for Agriculture and Food Innovations, The University of Queensland, St Lucia, QLD, Australia, 8 Institute of Biology II, Faculty of Biology, University of Freiburg,德国弗莱堡,9个综合生物信号研究中心(CIBSS),德国弗莱堡大学,德国弗莱堡大学,加利福尼亚大学,加利福尼亚大学戴维斯分校的植物科学系10
