实施电弧定向能量沉积需要开发新型、工艺适应性强的高性能铝合金。然而,传统的高强度合金难以加工,因为它们容易产生热裂纹。基于 Al-Mg-Zn 的交叉合金结合了良好的可加工性和人工时效后的良好机械性能。在这里,我们提出了一种使用 Ag 微合金化进一步改善 Al-Mg-Zn 交叉合金机械性能的努力。在样品中没有观察到裂纹和少量孔隙。微观结构以细小和球状晶粒为主,晶粒尺寸为 26.6 l m。晶粒结构基本上没有纹理,包含细小的微观偏析区,偏析缝厚度为 3-5 微米。经热处理后,这些微观偏析区溶解,并形成 T 相沉淀物,这通过衍射实验得到澄清。该沉淀反应导致显微硬度为 155 HV0.1,屈服强度分别为 391.3 MPa 和 418.6 MPa,极限拉伸强度分别为 452.7 MPa 和 529.4 MPa,横向和纵向断裂应变分别为 3.4% 和 4.4%。所得结果表明,可以使用新开发的铝交叉合金通过电弧直接能量沉积制造高负荷结构。
高带gap(较短的波长)材料由III-V半导体组合形成,允许在紫外线范围内进行辐射排放。通过改变铝,粘液和凝胶的比率,可以获得特定的发射波长。UV LED进一步分类为UVA,UVB和UVC LED。在UV和UVA LED附近使用Ingan在活动区域中使用Ingan,并且主要在蓝宝石底物上生长。氮化铝含量是低于365 nm的波长的首选材料。对于发射较短的紫外线波长的设备,需要具有更大铝含量的组合物。蓝宝石底物含有氮化铝或氮化铝铝铝层,也用于提高较短波长的LED质量[4]。
3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 3 3 1 1 2 1 1 1 丙酮 1 2 1 1 3 1 3 3 苯乙酮 2 2 2 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 4 2 2 2 3 3 1 3 乙炔 3 2 1 1 1 1 1 2 空气 (100 °C) 1 2 1 1 1 1 1 空气 (150 °C) 1 2 1 1 3 3 1 3 空气 (200 °C) 1 2 1 1 3 3 1 3 乙酸铝4 4 4 4 2 1 3 2 溴化铝 4 4 4 4 1 1 1 1 氯化铝(10%) 3 3 3 3 1 1 1 1 氯化铝(100%) 3 2 2 2 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 3 2 2 1 1 1 1 铝盐 4 4 4 4 1 1 1 1 硫酸铝 2 3 2 3 1 1 1 1 明矾(NH3-Cr-K) 4 4 4 4 1 1 3 1 氨(无水) 3 2 1 1 2 1 3 1 氨(冷,气体) 3 2 4 1 1 1 3 1 氨水(热、气态) 3 2 4 1 3 2 3 2 碳酸铵 3 2 3 3 3 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 3 1 2 3 1 3 1 硝酸铵 3 3 1 1 1 1 4 1 过硫酸铵溶液 3 3 1 2 3 1 4 4 磷酸铵(一元、二元、三元) 3 3 3 2 1 1 4 1 铵盐 4 4 4 4 1 1 3 1 硫酸铵 3 3 2 3 1 1 3 1 硼酸戊酯 4 4 4 4 1 3 1 1 戊基氯 4 2 1 1 4 3 1 2 戊基氯萘 4 4 4 4 3 3 1 3 戊基萘 4 4 4 4 3 3 1 3 动物油(猪油) 2 2 2 2 1 2 1 2 Aroclor 1248 2 3 3 3 3 2 1 3 Aroclor 1254 2 3 3 3 3 2 1 3 Aroclor 1260 2 3 3 3 1 4 1 1 芳族燃料 -50% 4 4 4 4 2 1 1 3 砷酸 3 3 1 1 1 2 1 1 沥青 3 3 1 1 2 3 1 2 ASTM 油,n° 1 1 1 1 1 1 3 1 1 ASTM 油,n° 2 1 1 1 1 1 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 3 ASTM 油,编号 4 1
镍磷酸催化剂,遵循Tamao等人报告的程序。34电化学合成和环状伏安法(CV)在EG&G PAR 273型Potentiostat/galvanostat上进行。用饱和的钙胶电极(SCE)用作参考和铂金箔作为工作和反电极,用饱和的钙胶电极(SCE)用作。 用铬酸洗涤工作电极,然后用水洗涤,并将其抛光至CA的最终平滑度。 0.1 PRM,含氧化铝抛光粉,然后用蒸馏水和乙腈彻底冲洗。 在Perkin-Elmer 1610 FTIR光谱仪上记录了聚合物-KBR颗粒的红外光谱。 使用测量电导率。用铬酸洗涤工作电极,然后用水洗涤,并将其抛光至CA的最终平滑度。0.1 PRM,含氧化铝抛光粉,然后用蒸馏水和乙腈彻底冲洗。在Perkin-Elmer 1610 FTIR光谱仪上记录了聚合物-KBR颗粒的红外光谱。使用
3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 4 4 4 4 1 1 1 2 丙酮 3 3 1 1 2 1 1 1 苯乙酮 1 2 1 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 2 2 2 2 3 1 3 3 乙炔 4 2 2 2 3 3 1 3 空气 (100 °C) 2 3 1 1 3 3 1 3 空气 (150 °C) 4 4 4 4 1 3 1 3 空气 (200 °C) 1 1 1 1 3 1 3 3 乙酸铝1 2 1 1 2 2 1 2 溴化铝 1 2 1 1 3 3 1 3 氯化铝(10%) 4 4 4 4 2 1 3 2 氯化铝(100%) 4 4 4 4 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 2 2 2 1 1 1 1 铝盐 1 2 1 1 1 1 1 1 硫酸铝 3 3 3 3 1 1 1 1 明矾(NH3-Cr-K) 3 2 1 1 1 1 1 2 氨(无水) 3 3 2 2 1 1 1 1 氨(冷,气体) 3 2 1 1 2 1 3 1 氨(热、气态) 4 4 4 4 1 1 3 1 碳酸铵 4 4 4 4 1 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 2 4 1 1 1 3 1 硝酸铵 3 2 4 1 3 2 3 2 过硫酸铵溶液 3 2 3 3 3 1 1 1 磷酸铵(一元、二元、三元) 3 3 2 3 1 1 1 1 铵盐 3 3 1 1 1 1 4 1 硫酸铵 3 3 1 2 3 1 3 1 硼酸戊酯 3 3 1 2 3 1 4 4 氯化戊酯 3 3 3 2 1 1 4 1 戊基氯萘 4 4 4 4 1 1 3 1 戊基萘 3 3 2 3 1 1 3 1 动物油(猪油) 1 1 1 1 2 3 1 2 Aroclor 1248 4 4 4 4 1 3 1 1 Aroclor 1254 4 2 1 1 4 3 1 3 Aroclor 1260 4 4 4 4 3 3 1 3 芳烃燃料 -50% 4 4 4 4 3 3 1 3 砷酸 2 2 2 2 1 2 1 2 沥青 2 3 3 3 3 2 1 3 ASTM 油,n° 1 3 3 1 1 1 1 1 1 ASTM 油,n° 2 3 3 1 1 2 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 1 ASTM 油,编号 4 1
在这项研究中,使用Geant4 Monte Carlo模拟工具,我们研究了氧化铝,氟化镁,氟化铝,氟化铝,二氧化钛,二吡啶镁,镁镁,硅酸镁,二氧化钙,二氧化钙和液态的燃料范围,并在0.015至10 c. 10 c. 10 c.10 c. 10 c. 10 c.10 c.10 c.10 c.10 c上。在这篇综述中,我们已经计算并分析了线性衰减系数(LAC)和质量衰减系数(MAC),半价值层(HVL),第十值层(TVL),平均自由路径(MFP),有效的原子数,有效的原子密度,有效的电子密度,等效原子原子数和构建量和构建因素和构建因素和构建因素。在工作的延续中,我们已经比较了Geant4 Monte Carlo Simulation Tool的质量衰减系数的计算结果与其他人的实验结果,并通过Xmudat代码的仿真数据进行了比较,并且它们的相对误差非常低,并且彼此吻合非常吻合。最后,以适当的数字显示了所选材料获得的结果。
通过称为“热失控”的过程。被认为是由锂金属树突在内部生长到细胞内生长的,一个细胞可以简单地在内部释放其储存的能量作为热。,如果加热到可能低至150°C的温度,释放了其储存的电能,从而使相邻的细胞过热等等,也会自发放电。 至少从对这种热失控事故的分析中推断出足以熔化铝(660°C)的温度。 目击者报告始终说出重复的“重新点燃”,这是不可避免的,即使在完全没有氧气的情况下,只要温度超过了热失去失控的启动阈值即可。也会自发放电。至少从对这种热失控事故的分析中推断出足以熔化铝(660°C)的温度。目击者报告始终说出重复的“重新点燃”,这是不可避免的,即使在完全没有氧气的情况下,只要温度超过了热失去失控的启动阈值即可。
— 键合过程中铜 (Cu) 箔的氧化会使熔化温度从 1,083°C 降低到 1,065°C — 最大金属化厚度为 1 毫米 — 陶瓷的两侧都必须有金属化层 — 例如氧化铝 (Al 2 O 3 )、氮化铝 (AlN) 和氧化锆 (ZrO 2 ) 掺杂的高性能基板 (HPS)。 o 活性金属键合 (AMB)
与5μm厚的Ti层之间的650°C和950°C之间的键合1小时如图6。在BSE图像中显示的ALN层中的灰色区域。6(b)和6(d)是yttria。NBD模式是从相应TEM图像中以黄色圆圈的区域获取的。可以看出,随着加热温度从650°C上升到750°C,由于Cu – Ti IMC层的生长,残留的Ti层消失了。另外,可以看出,Cu – Ti IMC的层消失,并且在850°C或更高的ALN界面处形成一个明显的界面反应层。这些界面反应层的厚度,从图。6,在850°C下为≈0.5μm,在950°C下为≈1μm,
摘要:超声波无线能量传输技术(UWPT)是植入式医疗设备(IMD)供电的关键技术。近年来,氮化铝(AlN)由于其生物相容性和与互补金属氧化物半导体(CMOS)技术的兼容性而备受关注。同时,钪掺杂氮化铝(Al 90.4%Sc 9.6%N)的集成是解决AlN材料在接收和传输能力方面的灵敏度限制的有效解决方案。本研究重点开发基于AlScN压电微机电换能器(PMUT)的微型化UWPT接收器装置。所提出的接收器具有2.8×2.8 mm 2的PMUT阵列,由13×13个方形元件组成。采用声学匹配凝胶,解决液体环境下声阻抗不匹配问题。在去离子水中的实验评估表明,电能传输效率(PTE)高达2.33%。后端信号处理电路包括倍压整流、储能、稳压转换部分,可有效将产生的交流信号转换为稳定的3.3V直流电压输出,成功点亮商用LED。这项研究扩展了无线充电应用的范围,为未来实现将所有系统组件集成到单个芯片中,进一步实现设备小型化铺平了道路。