[3] M.E.Moussa, C.I.Esposito, M.E.Elpers, T.M.Wright, D.E.Padgett,髋关节脱位增加全髋关节置换术中氧化锆股骨头的粗糙度:59 次检索分析,J. Arthroplasty。30 (2015) 713–717。https://doi.org/10.1016/j.arth.2014.10.036。
60工厂 75工厂 27工厂 39工厂 63工厂 33工厂 41工厂 77工厂 65工厂 14工厂 15工厂 16工厂 17工厂 18工厂 21工厂 22工厂 23工厂 24工厂 25工厂 26工厂 28工厂 29工厂 30工厂 31工厂 32工厂 36工厂 40工厂 42工厂 43工厂 45工厂 46工厂 47工厂 48工厂 49工厂 19工厂 76工厂 67工厂 34工厂 35工厂 37工厂 38工厂 73工厂 51工厂 03工厂 10工厂 59工厂 66工厂 64工厂 02工厂20工厂 44工厂 04工厂 70工厂 68工厂 57工厂 60工厂 61工厂 62工厂 78工厂 79工厂 74工厂 13工厂 72工厂 84工厂 56工厂 52工厂 08工厂 50工厂 83工厂 81工厂 11工厂 05工厂 01工厂 82工厂 06工厂 58工厂 53工厂 69Aughinish工厂 12工厂 55工厂 54工厂 80工厂 07工厂 09
•所有层:96%氧化铝基板和杜邦5771 AU厚膜金属化•内部设计的,商业上制造的,商业上的步骤I•Ferro 10-054玻璃作为粘合剂(蓝色)•堆叠•玻璃粘合剂湿•时,•水平对齐的“壁上”,在150°C下,在150°C下,在150°C下,lift lime d Dried速度,该速度为20分钟,仪式为20分钟。 850°C在空气中的盒子烤箱中,坡道速率为40°C/min。步骤iii•将Au糊(5771)添加到侧壁上的Au垫之间的空间•在150°C下干燥20分钟,坡度速率为40°C/min,在850°C下发射20分钟,坡道速率为40°C/min,在空气中的盒子烤箱
“ ctusbdu(bmmjvn ojusjef ijhi fmfduspo npcjmjuz usbotjtupst(b/)&。5t bsf bu b qpjou pg sbqje pg sbqje hspxui hspxui hspxui hspxui i uif tuboebse(b/ ifufsptuvsft sfnbjo vopqujnj [fe gps nbyjnvn qfsgpsnbodf'ps uijt sfbtpo xf qspqptf qspqptf uif tijgu/ mbujops qspwf uif pvuqvu qpxfs boe uifsnbm nbobhfnfu pg *** ojusjefbnqmjàfst#fzpoe jnqspwmfonphu jmm jmm jmm bmmpx bmmpx bmmpx Ojdt 4ubuf pg uif dvssfou q diboofm'&5tnbuvsfàmufsjfdjpmwjbohmmz xjui ufhsbufe xjui xjui xjui bo“ m/(b/)& usjef fmfduspojdt nbz nbyjnj [f uifjhis qpfndpwmm ijhi nnvojdbujpo boe ijhi ijhi qpxfs mphjd bqqmjdbujpot
能源可用性和温室气体排放已成为与传统不可再生来源过度消耗有关的问题(Wang等,2013)。迫切需要开发和寻找可再生绿色能源资源,同时迫切需要更好的能源存储系统。超级电容器引起了广泛的兴趣(Wang等,2007; Sarno等,2015),因为它们的高能量密度,出色的周期稳定性,高特异性电容和长寿(Xia等,2012)。根据不同的储能机制,可以将超级电容器分为两个主要类别(Yang等,2012):双层电容器和伪能力。在双层电容器(例如,碳材料)中,电极通过使用界面双层的静电电容来存储能量。伪电容器的电容比双层电容器更高,它通过快速且可逆的氧化还原反应保持电荷。作为电极材料,金属氧化物由于其在氧化还原反应中的高电容特性而引起了极大的兴趣。已经使用了许多过渡金属氧化物和导电聚合物。氧化铝具有许多独特而有吸引力的特性,例如较大的特定表面积,良好的导热性,对大多数酸和碱的惰性,机械强度和刚度,耐磨性,高吸附能力以及热稳定性。此外,Al 2 O 3也是无毒的,高度磨料且廉价的(Mallakpour和Khadem,2015; Mirjalili等,2011; Gunday等,2019)。这些特性使Al 2 O 3适用于各种应用,例如催化剂,传感器和超级电容器。尤其是,据报道,由γ-Al 2 O 3纳米颗粒,多脏和氧化石墨烯还原构成的三元电极的超级电容器性能(Azizi等,2020)。证明了Al 2 O 3在改善和增强导电聚合物电化学稳定性和电容的有益作用,这要归功于催化的氧化还原反应能力。然而,据我们所知,唯一具有高纯度和形态均匀性的氧化铝构成的电极的电化学特性从未被报道过。为了形成稳定,廉价且执行的电极,在这里,我们报告了由热等离子体技术制备的Al 2 O 3粉末用于超级电容器应用。在高纯度和细粉合成过程中,避免了通常在化学过程中所需的复杂且昂贵的制备步骤的蒸气相反应,即降水和纯化,特别有助于生产具有较窄尺寸分布的毛胶状颗粒(Iovane等,2019; Hong和Yan。,2019; Hong and Yan,2018)。扫描电子显微镜(SEM),热重分析(TG),傅立叶
本论文中表达的观点为作者的观点,不反映美国空军、国防部或美国政府的官方政策或立场。本材料被宣布为美国政府的作品,不受美国版权保护。
摘要:固态量子发射器 (QE) 是光子量子信息处理的基础。由于 III 族氮化物半导体中 QE 的制造工艺复杂,且在光电子、高压功率晶体管和微波放大器等领域的应用日益广泛,因此人们对开发高质量的 QE 产生了浓厚的兴趣。本文报道了在氮化铝基光子集成电路平台中生成和直接集成 QE。对于单个波导集成 QE,在连续波 (CW) 激发下,在室温下测得的芯片外计数率超过 6 × 10 4 计数/秒 (cps;饱和率 >8.6 × 10 4 cps)。在未图案化的薄膜样品中,在连续波激发下,室温下测量了 g (2) (0) ∼ 0.08 的反聚束和超过 8 × 10 5 cps(饱和率 >1 × 10 6 cps)的光子计数率。虽然自旋和详细的光线宽度测量留待将来研究,但这些结果已经表明,高质量 QE 有可能单片集成在各种 III 族氮化物器件技术中,这将带来新的量子器件机会和工业可扩展性。关键词:薄膜氮化铝、量子发射器、光子集成电路、单光子、宽带隙半导体、量子光子学 Q
为提高隔膜性能、降低热失控概率,在 PE/PP 膜上采用陶瓷颗粒(主要是氧化铝(Al 2 O 3 )颗粒)涂覆一层陶瓷层。涂覆的氧化铝层可防止隔膜在高温下发生故障,并阻止枝晶对隔膜的损坏。要求氧化铝必须足够纯净(通常纯度为 99.99%),因此金属阳离子杂质和金属杂质低于几 ppm。杂质可能会渗入电解液,并在电池运行过程中形成枝晶,或者形成加速枝晶形成的晶核。陶瓷层中的金属是短路的根源,无论是由原材料和制造过程引入的,还是在运行过程中形成的。陶瓷层中的杂质更有害,因为它靠近聚合物膜。
及其复合材料在高湿度应用条件下仍然面临着磷水解的挑战。了解硅与 CaAlSiN 3 :Eu 2+ 之间的界面黏附力对于该材料的开发和应用具有重要意义。在本文中,首先通过实验测量和比较了硅/原始 CaAlSiN 3 :Eu 2+和硅/水解 CaAlSiN 3 :Eu 2+复合材料的力学性能,其中水解反应后复合材料的拉伸强度和杨氏模量都有所增加。然后,采用第一性原理密度泛函理论 (DFT) 计算在原子水平上研究硅分子在原始和水解 CaAlSiN 3 [0 1 0] 上的黏附行为。结果表明:(1)硅分子通过范德华(vdW)相互作用在原始 CaAlSiN 3 [0 1 0] 上形成弱吸附,而由于界面处形成了氢键,硅分子在水解 CaAlSiN 3 [0 1 0] 上的吸附强度大大增强;(2)瞬态计算表明,由于吸附能增加以及表面粗糙度增加,硅在水解 CaAlSiN 3 [0 1 0] 上的滑动能垒高于在原始 CaAlSiN 3 [0 1 0] 上的滑动能垒。总的来说,本文的研究结果可以指导 LED 封装中荧光粉的选择、储存和工艺,也有助于改善高湿度条件下使用的 LED 封装的可靠性设计。