能源可用性和温室气体排放已成为与传统不可再生来源过度消耗有关的问题(Wang等,2013)。迫切需要开发和寻找可再生绿色能源资源,同时迫切需要更好的能源存储系统。超级电容器引起了广泛的兴趣(Wang等,2007; Sarno等,2015),因为它们的高能量密度,出色的周期稳定性,高特异性电容和长寿(Xia等,2012)。根据不同的储能机制,可以将超级电容器分为两个主要类别(Yang等,2012):双层电容器和伪能力。在双层电容器(例如,碳材料)中,电极通过使用界面双层的静电电容来存储能量。伪电容器的电容比双层电容器更高,它通过快速且可逆的氧化还原反应保持电荷。作为电极材料,金属氧化物由于其在氧化还原反应中的高电容特性而引起了极大的兴趣。已经使用了许多过渡金属氧化物和导电聚合物。氧化铝具有许多独特而有吸引力的特性,例如较大的特定表面积,良好的导热性,对大多数酸和碱的惰性,机械强度和刚度,耐磨性,高吸附能力以及热稳定性。此外,Al 2 O 3也是无毒的,高度磨料且廉价的(Mallakpour和Khadem,2015; Mirjalili等,2011; Gunday等,2019)。这些特性使Al 2 O 3适用于各种应用,例如催化剂,传感器和超级电容器。尤其是,据报道,由γ-Al 2 O 3纳米颗粒,多脏和氧化石墨烯还原构成的三元电极的超级电容器性能(Azizi等,2020)。证明了Al 2 O 3在改善和增强导电聚合物电化学稳定性和电容的有益作用,这要归功于催化的氧化还原反应能力。然而,据我们所知,唯一具有高纯度和形态均匀性的氧化铝构成的电极的电化学特性从未被报道过。为了形成稳定,廉价且执行的电极,在这里,我们报告了由热等离子体技术制备的Al 2 O 3粉末用于超级电容器应用。在高纯度和细粉合成过程中,避免了通常在化学过程中所需的复杂且昂贵的制备步骤的蒸气相反应,即降水和纯化,特别有助于生产具有较窄尺寸分布的毛胶状颗粒(Iovane等,2019; Hong和Yan。,2019; Hong and Yan,2018)。扫描电子显微镜(SEM),热重分析(TG),傅立叶
主要关键词