引言人线粒体DNA(mtDNA)是圆形双链体,由16 569个碱基对(BPS)组成。1 mtDNA变体是在没有进行重组的情况下进行母体传播的,从而使它们在连续的世代上积累。mtDNA的这种特征使其成为研究人群遗传学,系统发育进化,人类迁移以及医学和法医研究的流行工具。许多关于mtDNA分析的研究已经发表。2-11线粒体单倍群包括具有相同累积mtDNA变体的个体,通常在特定地理区域中发现,并且可以通过母体谱系进行追踪。这些单倍体在线粒体系统发育树中构成不同的分支。某些单倍体主要与特定地理区域相关。单倍群L0 – L6通常在撒哈拉以南非洲人中发现,而R5 – R8,M2 – M6和M4 –
3.2.1 单倍体系的诱导 ...................................................................................................................................... 17 3.2.2 雄性不育系的产生 ...................................................................................................................................... 18 3.2.3 杂种优势的固定 ...................................................................................................................................... 19 3.2.4 自交不亲和性的操控 ...................................................................................................................................... 20 3.2.5 植物育种技术中的其他应用 ...................................................................................................................... 20 3.3 加速作物驯化 ............................................................................................................................................. 21
比较急性骨髓性白血病或脊髓质质综合征的患者中移植后环磷酰胺的单倍体供体造血细胞移植的强度调节方案的比较。Hany Elmariah/ Shukaib Arslan/ Monzr Al Malki/ Neli Bejanyan div>
由于长期阅读的DNA测序技术,可以进行复杂基因组的从头基因组组件。但是,基于长阅读的组件质量最大化是一项具有挑战性的任务,需要开发专门的数据分析技术。我们提出了用于组装单倍体和二倍体生物的长DNA测序读数的新算法。组件算法构建了一个无方向的图,每个读取两个顶点是根据由k-mer分布得出的哈希函数所指出的最小化器所读取的。在图形构造过程中收集的统计信息被用作通过选择边缘来构建布局路径的功能,该边缘通过似然函数排名。对于二倍体样品,我们整合了对RefHAP算法进行分子相分化的重新配置。我们在PACBIO HIFI和纳米孔测序数据上运行了从不同物种的单倍体和二倍体样品中采集的纳米孔测序数据。与当前使用的其他软件相比,我们的算法表现出竞争精度和计算效率。我们希望这种新的发展对于为不同物种建立基因组组件的研究人员将很有用。
将父本置于各种环境操纵之下表明,在雄性对后代的投资几乎仅限于精子的物种中,父系效应也可能非常重要。然而,父系效应是否也具有遗传成分(即父系间接遗传效应 (PIGE))在此类物种中仍不清楚,这主要是因为在区分基因的间接效应和直接效应方面存在方法学困难。然而,PIGE 可能很重要,因为它们有能力促进进化变化。在这里,我们使用果蝇遗传学来构建一个育种设计,可以对几乎完整的单倍体基因组(超过 99%)进行 PIGE 测试。使用这种技术,我们估计了四个种群中由于 PIGE 导致的雄性寿命差异,并将其与总父系遗传差异(父系间接和直接遗传效应之和)进行比较。我们的结果表明,总父系遗传差异的很大一部分来自 PIGE。对从单个种群随机抽取的 38 个单倍体基因组的筛选表明,PIGE 还会影响种群内寿命的变化。总之,我们的结果表明,PIGE 可能构成了表型变异的一个未被充分重视的来源。
摘要:哺乳动物端粒长度主要受端粒酶调控,端粒酶是一种由逆转录酶(TERT)和RNA亚基(TERC)组成的核糖核蛋白。TERC在所有细胞中均有组成性表达,而TERT表达则在时间和空间上受到调控,因此在大多数成年体细胞中,TERT处于失活状态,端粒酶活性无法检测到。大多数肿瘤细胞激活TERT作为阻止进行性端粒磨损的机制,以实现增殖永生。因此,失活TERT被认为是一种有前途的癌症治疗方法。在这里,我们应用CRISPR / Cas9基因编辑系统靶向癌细胞中的TERT基因。我们报告称,TERT的破坏严重损害了癌细胞在体外和体内的存活率。 TERT 在肿瘤细胞中的单倍体不足足以导致体外端粒磨损和生长迟缓。在体内,TERT 单倍体不足的肿瘤细胞在移植到裸鼠后未能形成异种移植物。我们的工作表明,基因编辑介导的 TERT 敲除是治疗癌症的潜在治疗选择。
将父本置于各种环境操纵之下表明,在雄性对后代的投资几乎仅限于精子的物种中,父系效应也可能非常重要。然而,父系效应是否也具有遗传成分(即父系间接遗传效应 (PIGE))在此类物种中仍不清楚,这主要是因为在区分基因的间接效应和直接效应方面存在方法学困难。然而,PIGE 可能很重要,因为它们有能力促进进化变化。在这里,我们使用果蝇遗传学来构建一个育种设计,可以对几乎完整的单倍体基因组(超过 99%)进行 PIGE 测试。使用这种技术,我们估计了四个种群中由于 PIGE 导致的雄性寿命差异,并将其与总父系遗传差异(父系间接和直接遗传效应之和)进行比较。我们的结果表明,总父系遗传差异的很大一部分来自 PIGE。对从单个种群随机抽取的 38 个单倍体基因组的筛选表明,PIGE 还会影响种群内寿命的变化。总之,我们的结果表明,PIGE 可能构成了表型变异的一个未被充分重视的来源。
戴蒙德-布莱克凡贫血 (DBA) 是一种遗传性血液疾病,由核糖体蛋白 (RP) 基因(最常见的是 RPS19)的杂合功能丧失突变引起。DBA 的标志性特征是婴儿发生的发育不全性贫血,但一些年龄较大的患者会出现骨髓细胞减少症和多系血细胞减少症。DBA 中贫血的机制尚不完全清楚,对于生命后期发生的全血细胞减少症的了解就更少了,部分原因是患者的造血干细胞和祖细胞 (HSPC) 难以获得,而目前的实验模型并不理想。我们通过使用 CRISPR/Cas9 编辑健康人类供体 CD34 + HSPC 来创建 RPS19 单倍体不足,从而模拟了 DBA。体外分化显示髓系生成正常和红细胞生成受损,如在 DBA 中观察到的那样。移植到免疫缺陷小鼠体内后,RPS19 +/− HSPC 的骨髓再生能力显著降低,表明造血干细胞 (HSC) 受损。RPS19 单倍体不足导致的红细胞和 HSC 缺陷可通过用表达 RPS19 的慢病毒载体转导或通过 Cas9 破坏 TP53 得到部分纠正。我们的研究结果基于对原代人类 HSPC 的基因组编辑,定义了一种可处理、生物学相关的 DBA 实验模型,并确定了一种模拟 DBA 全造血缺陷的相关 HSC 缺陷。
使用CRISPR Prime编辑Steven Erwood 1,2,Teija M.I.的饱和变体解释。bily 2,†,Jason Lequyer 1,3,†,Joyce Yan 2,Nitya Gulati 1,2,Reid A.Brewer 2,4,Liangchi Zhou 2,Laurence Pelletier 1,3,Evgueni A. Ivakine 2,4,*,Ronald D. Cohn 1,2,4,5 1。加拿大多伦多多伦多大学分子遗传学系2.遗传学和基因组生物学计划,加拿大安大略省多伦多的病儿童研究所医院3.Lunenfeld-Tanenbaum研究所,加拿大安大略省多伦多山医院4.加拿大多伦多多伦多大学生理学系5。多伦多大学儿科和生病儿童医院,加拿大多伦多的医院†这些作者在过去十年中向Zhenya.ivakine@sickkids.ca摘要贡献了同样的贡献,在过去的十年中,下一代测序在临床实践中已广泛实施。 然而,由于经常确定具有不确定意义的遗传变异(VU),因此对这种变体的缩放功能解释的需求变得越来越明显。 一种解决此问题的方法是饱和基因组编辑(SGE),它允许对单核苷酸变体进行缩放的多重功能评估。 但是,SGE的当前应用依赖于同源指导的维修(HDR)引入感兴趣的变体,这受到较低的编辑效率和低产品纯度的限制。 此外,我们设计了一种基因组编辑策略,该策略允许基因基因座的单倍体化,该策略允许几乎任何细胞类型中的孤立变体解释。多伦多大学儿科和生病儿童医院,加拿大多伦多的医院†这些作者在过去十年中向Zhenya.ivakine@sickkids.ca摘要贡献了同样的贡献,在过去的十年中,下一代测序在临床实践中已广泛实施。然而,由于经常确定具有不确定意义的遗传变异(VU),因此对这种变体的缩放功能解释的需求变得越来越明显。一种解决此问题的方法是饱和基因组编辑(SGE),它允许对单核苷酸变体进行缩放的多重功能评估。但是,SGE的当前应用依赖于同源指导的维修(HDR)引入感兴趣的变体,这受到较低的编辑效率和低产品纯度的限制。此外,我们设计了一种基因组编辑策略,该策略允许基因基因座的单倍体化,该策略允许几乎任何细胞类型中的孤立变体解释。在这里,我们对SGE进行了改编的CRISPR质量编辑,并证明了其在理解溶酶体储存障碍尼曼 - 佩克病C1(NPC)的NPC1基因中变体的功能意义的实用性。通过将饱和素编辑(SPE)与临床相关的测定相结合,我们在NPC1单倍体HEK293T细胞中的功能评分和解释了256种变体。为了进一步证明该策略的适用性,我们使用SPE和细胞模型单倍体化在BRCA2基因中的功能上为465个变体分数。我们预计我们的工作将可以翻译成具有适当的细胞测定法的任何基因,从而可以更快,准确地诊断,改善遗传咨询,并最终确切地精确的患者护理。引言精度或个性化药物必然是基于对人群中发现的遗传变异的强烈理解。因此,人类疾病基因中发现的VU的优势是实现