KAESER SIGMA 频率控制 (SFC) 旋转螺杆压缩机专为满足您苛刻的工业应用需求而设计。KAESER SFC 装置采用最新的西门子驱动技术,能够满足不断变化的需求,同时保持稳定的压力控制。因此,可靠性极高,能效卓越。事实上,这些装置的效率比竞争对手高出 25%。
KAESER SIGMA 频率控制 (SFC) 旋转螺杆压缩机专为满足您苛刻的工业应用需求而设计。采用最新的西门子驱动技术,KAESER SFC 装置能够满足不同的需求,同时保持稳定的压力控制。其结果是卓越的可靠性和卓越的能源效率。事实上,这些装置的效率比竞争对手高出 25%。
电化学能源转换技术在太空任务中起着至关重要的作用,例如在国际空间站(ISS)的环境控制和生命支持系统(ECLSS)中。它们对于未来的氧气,燃料和化学生产的长期太空旅行也至关重要,在这种氧气,燃料和化学生产中,不可能从地球上重新供应资源。在这里,我们提供了当前现有的电解能转化技术,用于空间应用,例如质子交换膜(PEM)和碱性电解仪系统。我们讨论了这些设备中的界面过程受到减少的重力影响,并对电解系统的未来应用提供了前景,例如,现场资源利用率(ISRU)技术。还讨论了计算建模的观点,以预测减少的重力环境对管理电化学过程的影响,并提出了实验建议,以更好地理解降低引力环境中燃气气泡形成和脱离等效率效应过程。
所有声明,技术信息,建议和建议仅用于信息目的,不打算,不应将其解释为任何类型或销售期限的保修。读者被告知,三菱化学高级材料不能保证此信息的准确性或完整性,并且客户有责任测试和评估在任何给定应用中或用于完成设备中使用的三菱化学高级材料产品的适用性。
重量轻,出色的冲击力和能量吸收性能的晶格结构的抽象激光添加剂制造(AM)在航空航天,运输和机械设备应用程序领域中引起了极大的关注。在这项研究中,我们使用拓扑优化方法设计了四个梯度晶格结构(GLS),包括单向GL,双向增加GL,双向降低GL和无GLS。所有GLS均通过激光粉末床融合(LPBF)生产。进行了单轴压缩测试和有限元分析,以研究梯度分布特征对变形模式和GLS的能量吸收性能的影响。结果表明,与45°无GLS的剪切裂缝特征相比,单向GL,双向增加GL和双向降低的GLS具有逐层骨折的特征,显示出相当大的提高能量吸收能力。双向增加的GL表现出剪切裂缝和按层裂缝的独特组合,分别具有最佳的能量吸收性能,可分别在0.5菌株时具有235.6 J和9.5 J g-1的特异性能量吸收。结合NITI合金的形状记忆效应,进行了多个压缩加热恢复实验,以验证LPBF所处理的NITI GLS的形状存储器函数。这些发现对GLS的未来设计具有潜在的价值,并通过激光AM实现NITI组件的形状记忆功能。
摘要 我们开发了一种带有粒子运动分析的油循环率 (OCR) 模拟技术,可以定量评估涡旋压缩机中形状和结构的影响。显然,粒子运动分析有利于分析油雾行为。分析包括三个模拟。这些模拟有三个不同的喷射器,它们定义了粒子的起始位置。第一个在固定涡旋的排出口,另一个在涡旋压缩机底部的油池上。最后一个喷射器在电机顶部,这三个模拟计算从压缩机排放到循环单元的颗粒数量。阐明了涡旋压缩机内部油雾行为的机制,并且这些模拟使得在各种模型的情况下,大多数计算结果都在测得的 OCR 的 ± 1wt% 以内。
摘要 卡诺电池被认为是一种有前途的适用于中型和大型应用的电-热-电存储技术。最近,有人提出在卡诺电池中使用两用热机。在这样的系统中,单个装置在充电期间充当热泵(HP,压缩机操作)或在放电期间充当有机朗肯循环(ORC,膨胀机操作)。与使用两台独立机器的传统卡诺电池相比,这种配置降低了该技术的投资成本。已经在小型(1 kW el)卡诺电池中试工厂使用单个涡旋压缩机/膨胀机进行了实验活动。在充电和放电模式下都测试了广泛的操作条件。讨论了系统电荷对两种操作模式下可获得工作点的影响。研究发现,在 HP 模式下运行系统所需的系统电荷低于 ORC 模式。在这些低电荷下,增加 HP 模式下的电荷对系统在较高源温和散热器温度下的性能有积极影响。在 ORC 模式的较高电荷下,发现增加系统电荷对研究的运行范围内的系统启动有积极影响。除了定性讨论外,还对系统和涡旋机进行了定量研究。
抽象未来的船员行星任务将在很大程度上取决于机器人在机器人到达前后的关键资产(例如返回车辆)的设置和计算的支持。有效地完成了各种各样的任务,我们设想使用一个异质团队在各种自治级别上被命令。这项工作为此类机器人团队提供了一个直观而多功能的命令概念,该机器人使用了船员船上的多模式机器人命令终端(RCT)。我们采用以对象为中心的知识管理,该管理存储有关如何处理机器人周围对象的信息。这包括有关检测,推理和与对象互动的知识。后者是以动作模板(ATS)的形式组织的,该模板允许任务的混合计划,即在符号和几何级别上进行推理,以验证可行性并找到相关动作的合适参数化。此外,通过将机器人视为对象,可以通过将技能嵌入ATS来轻松整合机器人。多机器人世界状态表示(MRWSR)用于实例化实际对象及其属性。当无法保证所有参与者之间的交流时,多个机器人的MRWSR的分散同步支持任务执行。为了说明机器人特异性感知属性,为每个机器人独立存储信息,并共享所有细节。此启用连续的机器人和命令专门决定,用于完成任务的信息。任务控制实例允许调整可用命令的可能性,以说明特定用户,机器人或方案。操作员使用RCT基于基于对象的知识代表来命令机器人,而MRWSR则用作行星资产的机器人 - 敏捷界面。选择要命令的机器人作为可用命令的顶级过滤器。通过选择一个对象实例,应用了第二个过滤器层。这些滤波器将多种可用命令降低到对操作员有意义且可操作的数量。机器人特定的直接远距离操作技能可通过各自的AT访问,并且可以绘制为可用的输入设备。使用机器人提供的每个输入设备提供的AT特定参数允许机器人 - 敏捷的使用情况以及不同的控制模式,例如。速度,模型介导或基于域的被动率控制。该概念将在Surface Avatar实验中的ISS上进行评估。关键字:太空遥控,机器人团队协作,可扩展的自主权,多模式用户界面,suversed自主权,远程介绍
• 无需额外安装成本。 • 节省占地面积。 • 使用节能环保的制冷剂 R410A,降低运营成本并确保零臭氧消耗。 • 低压降热交换器横流技术,节省能源和成本。 • 由于无损冷凝水排放,压缩空气零浪费。 • 先进的控制功能可确保在任何情况下空气干燥,并防止低负荷时结冰。 • 压力露点为 3°C/37°F(20°C/68°F 时相对湿度为 100%)。
科德宝过滤技术公司在工业空气过滤领域拥有 60 多年的领先地位,尤其擅长燃气轮机和压缩机领域。我们的解决方案能够可靠地清除涡轮机进气中的颗粒物,防止结垢,并最大限度地提高其性能和总体成本效益。通过防止涡轮叶片腐蚀和压缩机叶片上积聚灰尘,它们还可以提高可靠性,消除计划外停机并降低维护成本。此外,我们的解决方案始终经过优化,以满足特定的当地条件,例如高湿度、异常空气污染、极端粉尘浓度或盐水喷雾。