高熵碳化物 (HEC) 备受关注,因为它们是超高温和高硬度应用的有希望的材料。为了发现具有增强屈服强度和硬度的碳化物,需要基于机制的设计方法。在本研究中,提出了位错核原子随机性作为提高硬度的机制,其中位错核处不同元素之间的随机相互作用使位错更难滑移。基于密度泛函理论计算了 a ∕ 2 ⟨ 1 ̄ 10 ⟩ {110} 刃位错的 Peierls 应力,其中通过增加位错核处的元素数量来增加原子的随机性。结果表明,Peierls 应力在统计上随着元素数量的增加而增加,表明加入更多元素可能会产生更高的硬度。基于这一指导原则,我们制备了三种八阳离子 HEC(Ti、Zr、Hf、V、Nb、Ta、X、Y)C(X、Y = Mo、W、Cr、Mo 或 Cr、W),其成分由从头计算的形成焓和熵形成能力决定。单相致密陶瓷均表现出约 40 GPa 的高纳米压痕硬度。位错核心处不同元素之间的随机相互作用为提高结构陶瓷的硬度提供了一种机制。
量子信息产生是由量化场和低维原子系统之间的相互作用引起的,这是量子理论中最热门的主题之一[1]。RABI模型是描述原子系统与量化字段之间相互作用的第一个模型,它研究了两个水平原子与理想的腔场之间的相干性[2]。jaynes-cummings(JC) - 模型是另一个简单的模型,它描述了旋转波近似下的原子局部相互作用[3]。从那时起,JC模型就开始了概括,包括量化字段或原子系统或全部的概括。例如,讨论了信息生成诱导多光子JC模型和两级原子之间的相互作用[4]。研究了在经典场和Kerr样培养基的存在下移动的两级原子和多光子的纠缠和非经典相关性[5,6]。研究了非线性SU(1,1)和SU(2)量子系统的相干性和断层摄影熵[7]。最近,检查了外部环境对原子局部相互作用的影响,例如,恒星移位[8、9、10],振动石墨烯片[11]和光力学腔[12、13]。
实现 AS-ALD 的一种常见方法是使用自组装单分子层 (SAM) 作为抑制剂,以优先阻止一种表面材料上的 ALD 而不是另一种。 [7–14] SAM 是一种有机分子,由头部基团(也称为锚定基团)、主链(通过范德华相互作用参与自组装过程)和尾部官能团组成,其中尾部官能团会影响 SAM 形成后的最终表面特性。通过选择仅与特定表面反应的 SAM 分子头部基团,可以实现选择性 SAM 形成。例如,已证实烷硫醇和烷基膦酸可在金属基材上形成 SAM 结构,但不会在 SiO 2 上形成。 [15–21] 通过使用这两种 SAM 分子作为金属表面 ALD 抑制剂,已有多次成功演示在金属/电介质图案的电介质区域上选择性沉积电介质膜(电介质-电介质,或 DoD)和金属膜(金属-电介质,或 MoD)。[7–12,22,23]
摘要:在原子上薄的半导体中,CRSBR脱颖而出,因为它的散装和单层形式在磁性环境中均构成紧密结合的准二维激子。尽管对固态研究至关重要,但激子的寿命仍然未知。虽然Terahertz极化探测可以直接跟踪所有激子,而与带间选择规则无关,但相应的大型远场灶基本上超过了横向样品尺寸。在这里,我们将Terahertz极化光谱与近场显微镜结合在一起,以揭示CRSBR单层中的磁磁复发剂的飞秒衰减,该crsbr的单层比散装寿命短30倍。我们在散装CRSBR中揭示了结合和未结合的电子 - 孔对的低能指纹,并以无模型的方式提取单层的非平衡介电函数。我们的结果表明,首次直接访问CRSBR中准单维激子的超快速介电响应,可能会推进基于Ultrathin van der waals磁铁的量子设备的开发。关键字:原子上的固体,范德华磁铁,各向异性激子,超快动力学,飞秒近场显微镜,Terahertz
样品持有人的主要任务是将样品保持在稳定的位置。它也可以配备功能单元,例如加热器或液体腔室。扫描头用于固定悬臂并将其移到样品上。通常,压电驱动器用作精确的电动机,在X和Y方向上扫描样品。z方向上的运动通常也由压电电动机执行。1扫描头最重要的部分是尖端,该尖端位于小悬臂末端。悬臂大约只有头发宽(0.1毫米),通常由硅或氮化硅制成(Si 3 N 4)。尖端本身通常具有4-30 nm的半径(见图2 a)。四季度光电二极管用作从悬臂背面反射的激光的检测单元(见图2 b)。
六角硼硝酸盐(H-BN)由于其令人难以置信的电气,热和机械性能而近期引起了很多关注。其化学成分导致其化学惰性和无毒性,这使其与石墨材料不同(1)。过去,H-BN由于其摩擦学特性,即摩擦,润滑,表面相互作用。例如,这些特性已被理论上有效为航天器上的涂层,因为其在高温下保持其结构的能力(2,3)。对H-BN的分析较小,因为六角硼氮化硼纳米片(BNNS)也很感兴趣。正如已经发现石墨材料具有广泛的应用程序一样,BNN也是如此。bnns可以用作癌症药物递送的一种方法,因为它比基于石墨烯的材料更具生物相容性和毒性,但保留了许多相同的特性(4)。还发现了在量子信息中使用H-BN的动机,将量子通信科学用作“单光子发射器”(5)。我们对H-BN的特定兴趣源于其在高温下用作紫外光探测器的理论上的使用(6)。
增加受控原子和量子比特的数量的必要先决条件是允许应用相应数量信号的微结构,例如B. 通过整合微波线。这是通过叠加的结构实现的,类似于多层电路板。PTB 结构由一组厚金属导体层组成,这些层彼此通过电介质隔开,并通过通孔选择性地相互连接。金属层的数量原则上是不受限制的,因为每一层都具有高度精确的整体平面化。该工艺仅使用与环境超高真空以及低温操作对原子和离子捕获的严格要求相兼容的材料;此外,该结构的高频特性非常优异。
2。抑制光腔的主方程式可以将Fabry-Perot腔建模为由高反射镜制成,并具有带有固定间距的完美镜子。显然,存储在该腔内的光子将逐渐泄漏出部分反射镜,从而导致内部的状态发生变化。这个过程由主方程描述,就像原子耦合到场的原子一样,由光学Bloch方程描述。在此问题中,我们探索了单个模式腔的简单推导。让A和A†描述腔体内的光学感兴趣模式,具有特征性能量hΩ,由Hamiltonian H 0 =âHΩA†a描述。让| ψ)是最初的空腔状态。让我们假设光子以与腔体和γ的光子数成正比的速率泄漏出来,这参数化了泄漏镜的泄漏。因此,光子泄漏
蛋白质通过化学相互作用介导其功能;建模通常是通过侧链的这些相互作用是蛋白质设计中的重要需求。但是,构建全原子生成模型需要适当的方案来管理结构和序列中编码的蛋白质的共同连续和离散性质。我们描述了蛋白质结构Protpardelle的全部原子扩散模型,该模型立即将所有侧链状态表示为“叠加”状态;定义蛋白质的叠加叠加在样品产生过程中的单个残基类型和构象中。与序列设计方法结合使用时,我们的模型能够编码全原子蛋白质结构和序列。生成的蛋白质在典型的质量,多样性和新颖性指标下具有良好的质量,而Sidechains则重现了天然蛋白质的化学特征和行为。最后,我们探讨了模型以无主链和无旋转器方式进行全原子蛋白设计和脚手架功能基序的潜力。
©2023作者,在Springer Nature Limited的独家许可下。保留所有权利。该文章的此版本已被接受,在同行评审后被接受,并受到Springer Nature AM使用条款的约束,但不是记录的版本,也不反映后接受后的改进或任何更正。记录版本可在线获得:http://dx.doi.org/10.1038/s41566-022-01132-6。