Krauss,T。D.*; Bren,K。L.*; Matson,E。M*。 “通过多氧化烷层簇从CDSE量子点中增强光催化氢的活性”。 Commun。,2020,56,8762-8765。Krauss,T。D.*; Bren,K。L.*; Matson,E。M*。“通过多氧化烷层簇从CDSE量子点中增强光催化氢的活性”。Commun。,2020,56,8762-8765。
解决社会面临的水资源和能源挑战需要可持续利用地球的关键区域和地下环境,以及适当设计和应用多孔材料以构建弹性基础设施和用于水处理/回收的膜。反应性传输模型 (RTM) 为环境工程和科学专业人员提供了一个强大的工具,用于研究控制这些系统动态行为的生物地球化学反应、流动、传输和热交换之间的复杂相互作用。因此,RTM 能够为可持续利用地球关键区域和地下环境的工程设计和政策制定提供信息。本期“利用反应性传输模型解决社会面临的水资源和能源挑战”特刊提供了几个例子,说明了 RTM 在资源回收、地下能源提取和碳减排等实践中的广泛应用。在本文中,我们简要概述了过去三十年来反应性传输模型研究领域的发展及其在环境工程和科学中日益广泛的应用。我们还提供了关于反应性传输模型研究前沿和新兴应用领域的观点,这些领域对于解决我们社会面临的水和能源挑战至关重要。示例应用领域包括地下水质量管理、矿山废物污染管理、安全核废料处置、可靠的地质碳储存、气候-水相互作用、弹性基础设施材料、关键材料的回收和增值、缓解干旱的地下水资源管理、负碳排放和地下可再生能源。
摘要。基于粒子的随机反应扩散(PBSRD)模型是一种流行的方法,用于捕获跨生物系统的反应和运输过程中的随机性。在某些情况下,此类模型固有的过度抑制近似值可能是不合适的,因此需要使用更多的显微镜Langevin Dynamics模型进行空间传输。在这项工作中,我们开发了一种新型的基于粒子的反应性Langevin动力学(RLD)模型,重点是得出与平衡时反应性通量详细平衡的物理约束的反应性相互作用核。我们证明,对于领先顺序,所得RLD模型的过度抑制限制对应于体积反应性PBSRD模型,其中众所周知的DOI模型是一个特定的实例。我们的工作提供了从更多的微观反应模型中系统地得出PBSRD模型的一步,并提出了对后者的可能约束,以确保两个物理尺度之间的一致性。
摘要 - 在Internet规模数据上接受培训的大型语言模型(LLMS)具有零拍摄的一代化功能,这使它们成为一种有前途的技术,用于检测和缓解机器人系统的分布故障模式。完全意识到这一诺言提出了两个挑战:(i)减轻这些模型的大量计算费用,以便可以在线应用它们,以及(ii)将他们对潜在异常现象的判断局限于安全控制框架。在这项工作中,我们提出了一个两阶段的推理框架:首先是一个快速的二进制异常分类器,可以分析LLM嵌入空间中的观察结果,该观察结果可能会触发较慢的后备选择阶段,该阶段利用了生成LLMS的推理。这些阶段对应于模型预测控制策略中的分支点,该策略保持了沿着各种后备计划继续沿着各种后备计划的联合可行性,以便在检测到异常后立即考虑缓慢的潜伏期,从而确保安全性。我们表明,即使使用相对较小的语言模型实例化,我们的快速异常分类器与最先进的GPT模型形成了自回归推理。这使我们的运行时监视器能够在资源和时间限制下改善动态机器人系统的可信度,例如四摩托或自动驾驶汽车。在我们的项目页面上可以使用仿真和现实世界实验中说明我们方法的视频:https://sites.google.com/view/aesop-llm。
对甲基氯仿代理的观察意味着甲烷寿命为11.2±1。3年,对流层OH 11氧化。由于过度OH 5,6,7,8,当前模型中,生命周期被低估了10-30%。对水蒸气吸收紫外线吸收的核算可以将模型OH降低4%12。模型还低估了OH的反应性(OHR; OH的损耗频率),为此,可以从地面位点和飞机13,14中获得广泛的测量。报道的模型低估了OHR的模型范围从远程对流层中的30%和污染的空气16中的60%的飞机采样,到大陆地面空气17,18中的2至10倍。低估了OHR通常归因于一氧化碳(CO)19,20的低估,而模型15,16,17,18中缺少的非甲烷挥发性有机化合物(NMVOC),这意味着这些模型将高估了甲烷对氢的敏感性。SI中提出的概念计算表明,如果模型低估了OHR,则OH对氢的敏感性被(1- F)-1 -1 -1高估了。例如,在模型中低估OHR 30%会导致OH对氢的敏感性高于43%。
多发性硬化症 (MS) 是一种中枢神经系统炎症性疾病,感染爱泼斯坦-巴尔病毒 (EBV) 可能是该病的先决条件。由于爱泼斯坦-巴尔病毒核抗原 1 (EBNA1) 和 α-晶体蛋白 B (CRYAB) 具有同源性,我们检查了 713 名 MS 患者 (pwMS) 和 722 名匹配对照者 (Con) 对 EBNA1 和 CRYAB 肽库的抗体反应。对 CRYAB 氨基酸 7 至 16 的抗体反应与 MS 相关 (OR = 2.0),高 EBNA1 反应与 CRYAB 阳性相结合显著增加了患病风险 (OR = 9.0)。阻断实验揭示了同源 EBNA1 和 CRYAB 表位之间的抗体交叉反应。在小鼠中获得了 EBNA1 和 CRYAB 之间 T 细胞交叉反应的证据,并且在接受那他珠单抗治疗的 pwMS 中检测到了增加的 CRYAB 和 EBNA1 CD4 + T 细胞反应。这项研究为 EBNA1 和 CRYAB 之间的抗体交叉反应提供了证据,并指出 T 细胞中存在类似的交叉反应,进一步证明了 EBV 适应性免疫反应在 MS 发展中的作用。
氧化铝和氧化石墨烯的增强陶瓷基质复合材料(CMC)已被广泛搜索,但仍未解决的问题,例如石墨烯的最佳分布或纤维纤维和基质之间的效率键。这项工作引入了一种基于Sol-Gel方法的新型制造程序,将Boehmite视为氧化铝前体,而氧化石墨烯纳米片则是增强阶段。通过在温和的条件下通过反应的火花等离子体烧结(RSP)进行样品的完整致密化。结构表征是由XRD,SEM和Micro-Raman以及其他技术进行的,并通过XPS研究了Al-O-C键的存在。通过Vickers的显微指示和纳米构造进行了机械表征。没有观察到有关年轻的模量,硬度或断裂韧性的显着变化,尽管对石墨烯分布的均匀性以及基质和增强阶段之间的化学键进行了改善。
在健康的大脑中,星形胶质细胞在神经元传播和血液 - 脑屏障(BBB)完整性中起着至关重要的作用。星形胶质细胞向反应状态的转化构成了中枢神经系统(CNS)对侮辱和大脑环境变化的生物学反应。众所周知,星形胶质细胞可以独立于神经元复制和积累王子[1-5]。然而,对它们的反应性转移对神经元功能和神经变性的影响知之甚少。在prion疾病中,反应性星形胶质细胞的有益作用似乎与星形胶质细胞生产的牛奶脂肪球表皮生长因子8(MFGE8)有关,这促进了凋亡人体的吞噬和细胞脱布的清除[6]。然而,在评估反应性星形胶质细胞对疾病进展的总体影响时,在保护稳态角色的潜在缺陷和有害功能的出现之外,至关重要的是,至关重要。最近的研究表明,反应性星形胶质细胞可能对神经元和内皮细胞产生净负面影响。从受prion感染的动物中分离出的反应性星形胶质细胞对原发性神经元表现出不利影响,导致树突状脊柱大小和密度降低以及突触完整性的损害[7](图1)。突触毒性作用是通过星形细胞分泌组的变化介导的,突出了信号传导途径在神经元功能障碍中的潜在作用。除了对神经元的影响外,反应性星形胶质细胞破坏了BBB的完整性。共培养实验涉及来自病毒感染的动物的星形胶质细胞或暴露于反应性星形胶质细胞的条件培养基中,诱导了从正常小鼠分离的内皮细胞中与疾病相关的表型[8](图1)(图1)。这种表型通过紧密和粘附连接蛋白的下调和异常定位以及内皮层的渗透性提高来征收这种表型。值得注意的是,星形胶质细胞激活程度和与prion疾病的孵育时间之间观察到非常强的反向相关[9]。具有快速疾病进展的动物群体表现出更严重的天线反应性,这表明星形胶质细胞的表型变化与缓解严重程度之间存在潜在的联系。这种观察结果提出了反应性星形胶质细胞的表型变化有助于更快的疾病进展的可能性。与这一假设一致,通过选择性靶向PERK信号传导的反应性星形胶质细胞中未折叠的蛋白反应的抑制作用,可以将其延长到小鼠中终末疾病的孵育时间[10]。总而言之,与Prion疾病相关的反应性星形胶质细胞对神经元和内皮细胞表现出有害的影响,并且可能是导致疾病进展的因素。阐明驱动星形胶质反应性的基本机制可能具有减轻与Prion疾病相关的神经退行性过程的治疗潜力。
脑血管控制及其与其他生理系统的整合在有效维持脑功能稳态方面发挥着关键作用。维持、恢复和促进这种平衡是脑康复和干预计划的首要目标之一。脑血管反应性 (CVR) 是脑血管储备的指标,在脑血流的化学调节中起着重要作用。改善血管反应性和脑血流是脑康复的重要因素,有助于实现预期的认知和功能结果。人们普遍认为,CVR 在衰老、高血压和脑血管疾病以及神经退行性综合征中受损。然而,许多生理因素都会影响 CVR,因此需要全面了解其潜在机制。我们目前对哪种康复方法可以改善 CVR 以及这些信息如何为患者的预后和诊断提供信息知之甚少。实施有针对性的康复方案将是阐明此类方案是否可以调节 CVR 的第一步,在此过程中可能有助于提高我们对潜在血管病理生理学的理解。因此,MRI 提供的高空间分辨率以及全脑覆盖为 CVR MRI 令人兴奋的最新发展打开了大门。然而,目前存在一些挑战,阻碍了其作为治疗计划和指导中有效诊断和预后工具的潜力。了解这些知识空白最终将有助于更深入地了解脑血管生理学及其在脑功能和康复中的作用。根据我们小组过去和正在进行的神经康复研究的经验教训,我们系统地回顾了导致衰老和疾病中 CVR 受损的生理机制,以及 CVR 成像及其在脑康复背景下的进一步发展如何为临床环境增加价值。