在本课程中,您将学习确定制造车身,电池和电动机的制造技术。汽车车身设计需要重新审视,鉴于电池重量会改变重量分布,从而弯曲,扭曲和一般的车辆行为。在课程进行时,您将了解电池制造技术,其中包括制定电池材料清单,袋/棱镜单元的制造技术以及集成到电池组中。在薄的微米厚箔的背景下,自动生产的技术的工作方式有所不同。制造电池的制造步骤,将讨论李离子和固态电池。最后,将讨论不同类型的电动机的制造和组装,包括使用最新的发夹缠绕技术的定子制造,以及使用软磁复合材料的转子制造。该课程仅适合EV的三个系统的制造方面,并且不会涵盖EV的电子和控制方面。
高速EDU高速EDU仅使用标准材料实现超过4.3kW/kg的令人印象深刻的功率密度。这节省了诸如铜和磁铁等昂贵的资源,并减少了重量,使其成为现代电动汽车的紧凑,高效且具有成本效益的解决方案。AVL的方法是创新和精确度的融合。EDU有两个电动机和一个中央变速箱,可实现单个车轮驱动,并具有低调。高速电机使用永久磁铁技术,针对高频优化的发夹绕组以及定子绕组的有效直接油冷却。这些元素的相互作用确保了出色的结果。逆变器是一种有效而紧凑的SIC设计,其特征是高功率密度,有效的开关和低电磁发射。具有高效,NVH优化的牙齿几何形状和注射润滑的两阶段变速器可改善系统的性能。
使用活化磷酸盐的使用通常允许轻度反应条件以核苷对核糖磷酸化的磷酸化,通常在水分条件下进行反应。最常将反应作为糊反应进行,以最大程度地减少活化的磷酸盐的水解,同时有利于核苷和磷酸化剂的凝结反应。[15,17]尽管可以以这种方式增加产率,但通常不可能对单个羟基的选择性磷酸化。Krishnamurthy等。证明,使用DAP,可以直接合成2'3'核苷单磷酸盐(2'3'CNMP),仅产生痕量的5'-氨基磷酸盐,最终在水中培养基中最终凝结为5'核苷单磷酸盐(5'NMP)。[15] 2'3'CNMP不仅在人体中发挥作用[18],而且还可能为在早期地球上形成RNA的途径提供了途径。[19,20]已经表明,发夹核酶或其变体能够催化在RNA链中添加2'3'CNMP,因此可能在RNA世界假设中起着基本作用。[19-23]
gRNA(向导 RNA):Cas9 使用的 CRISPR RNA(crRNA)包含 20 个碱基的原间隔元件和与 tracrRNA 互补的额外核苷酸。反式激活 CRISPR RNA(tracrRNA)与 crRNA 的互补区域杂交。组合的 crRNA 和 tracrRNA 与 Cas9 内切酶相互作用,激活编辑复合物以在目标基因组内的特定位点产生双链断裂。这 2 种天然 RNA 分子可以合成生成,用于基因组编辑实验。IDT 科学家已经修改了这些 RNA 的长度和组成,以优化基因组编辑效率,尤其是在与 CRISPR 核酸酶预先复合并以 RNP 形式递送到细胞时。或者,可以使用单向导 RNA(sgRNA)代替 crRNA 和 tracrRNA 的组合。sgRNA 包含通过发夹状环序列连接的 crRNA 和 tracrRNA 序列。向导 RNA(gRNA)可以是 crRNA:tracrRNA 复合物,也可以只是 sgRNA。
摘要:活生物体可以通过响应外部和内部刺激来产生相应的功能,而这种易怒性在自然界中起着关键作用。受到这种自然时间响应的启发,具有处理时间相关信息的纳米版本的开发和设计可以促进分子信息处理系统的开发。在这里,我们提出了一台可以动态响应顺序刺激信号的DNA有限状态机。为了构建这款状态机,开发了一种可编程的变构策略。该策略使用可构造的DNA发夹对DNAZYME构象进行可编程控制。基于此策略,我们首先实施了具有两个状态的有限状态机器。通过策略的模块化设计,我们进一步实现了具有五个状态的有限状态机器。DNA有限状态机赋予分子信息系统具有可逆逻辑控制和秩序检测的能力,可以将其扩展到更复杂的DNA计算和纳米机械,以促进动态纳米技术的发展。
急性髓性白血病是血液形成系统的恶性疾病。它仍然没有治疗,因此该疾病在出现第一次症状后的几个月内致命。尽管在理解白血病细胞的遗传和病理生物学过程中取得了显着的进步,但仅5年生存率的预测仍然非常糟糕。因此,迫切需要新的疗法。使用细胞系NOMO 1中的RNA干扰筛选被鉴定为程序性细胞死亡4,作为急性髓样白血病的新潜在依赖性。编程细胞死亡4是许多肿瘤标题中已建立的肿瘤抑制剂,但是这些迹象表明该蛋白质还具有组织和上下文特异性的致癌功能,到目前为止,只有少数检查涉及其在急性髓样白血病中的作用。之前的工作表明,短发夹RNA降低了编程的细胞死亡4 THP-1细胞的增殖和菌落形成。此外,可以在进一步的急性脊髓性白血病细胞系中再现生长抑制的表型,但不能在其他血液癌或实体瘤细胞中再现。提出了急性髓样白血病中程序性细胞死亡4的特定性致癌作用。使用CRISPR-CAS9技术,发现来自程序性细胞死亡4的敲除对THP-1细胞的增殖有中等影响。为了了解生长抑制作用,RNA测序和通过程序性细胞deat 4浸入的细胞和差异基因表达分析的基本机制,据称导致了鉴定。这项工作的目的是i)使用替代方法和ii)急性脊髓性白血病细胞中编程细胞死亡4-止动物的抗增殖表型,ii)潜在的程序性细胞死亡4,以验证直至最早的候选者。通过使用下一代RNA干扰技术,即改进的算法的嵌入了短发夹RNA,发现程序性细胞死亡4的部署并没有不断影响THP-1细胞的增殖。此外,结果支持以下假设:在编程细胞死亡4-耗竭后,史蛋白3赖氨酸27三甲基化,细胞外信号调节激酶1/2磷酸化和类似Tollike受体2的调节,并且可能是程序性细胞死亡4。最终将需要进一步的实验才能阐明程序性细胞死亡4在急性髓样白血病中的作用。
摘要MCM8和MCM9形成了一种功能性解旋酶复合物(MCM8/9),该复合酶在DNA同源重组修复中起着DNA双链断裂的作用。但是,DNA结合/放松的MCM8/9的结构表征尚不清楚。在这里,我们使用冷冻电子显微镜单粒子分析报告了MCM8/9复合物的结构。结构表明,MCM8/9通过三倍的对称轴排列到异己盒中,从而形成一个可容纳DNA的中央通道。MCM8/9的N-最小寡糖/寡核苷酸(OB)结构域的多种特征发夹突出进入中心通道,并放松双链DNA。被HROB激活时,MCM8/9的N层环的结构将其对称性从C3转换为C1,并通过扩展MCM8/9的Trimer界面的构象变化。此外,我们的结构动态分析表明,柔性C-Tier环相对于N层环表现出旋转运动,这是MCM8/9的放松能力所必需的。总而言之,我们的结构和生物化学研究为理解同源重组中MCM8/9解旋酶的DNA解体机制提供了基础。
摘要。三阴性乳腺癌(TNBC)是乳腺癌的侵略性亚型,治疗方案不足。为了确定新的靶标和治疗方式,我们搜索了文献中的循环RNA(CIRCRNA),这些循环RNA(CIRCRNA)介导了与TNBC相关的体内临床前模型中的功效。除了调节肿瘤抑制途径的5个下调的CIRCRNA外,我们还确定了15个上调的ciRCRNA。下调和上调是指在相应的非转化细胞和组织中的表达。上调的CIRCRNA包含五种跨膜受体和分泌的蛋白质作为靶标,五个转录因子和转录相关靶标,四个相关的细胞周期相关的CIRCRNA和一种涉及紫杉醇抗性。在本评论文章中,我们讨论了治疗干预的相关方面和方式。可以通过在肿瘤细胞中重新表达相应的ciRCRNA或相应靶标的上调来重新组建下调的ciRCRNA。可以通过小型互为RNA(siRNA)或短发夹RNA(shRNA)的方法来抑制上调的CIRCRNA,或使用小分子或与抗体相关的部分抑制相应的靶标。
DNA纳米技术涉及可用于生物技术,医学和诊断的非天然DNA纳米结构的设计。在这项研究中,我们引入了一个核酸五向连接(5WJ)结构,用于直接对全长生物RNA的电化学分析。据我们所知,这是通过附着在固体支持上的杂交探针对如此长的核酸序列审问的第一份报告。发夹状电极结合的寡核苷酸与三个适配器链杂交,其中一条用甲基蓝色(MB)标记。仅在存在特定DNA或RNA分析物的情况下,将四个链组合成5WJ结构。在总RNA样品中对全尺寸16S rRNA的询问后,与替代设计的电化学核酸生物传感器相比,电极结合的MB标记的5WJ关联产生的信号比率更高。这个优势归因于在电极表面形成的5WJ纳米结构上的有利几何形状。5WJ生物传感器是传统电化学生物传感器的一种成本效益替代品,用于分析核酸,这是由于电极结合和MB标记的DNA成分的普遍性。
1。简短离心管,包含siRNA,以确保在管子的底部收集siRNA颗粒。2。使用表1。a中列出的所需量的所需的最终浓度重悬于无RNase 1X siRNA缓冲液中(请参见下面的注释)。例如:对于10 nmol的siRNA和20 µm库存浓度,加入500 µl 1x siRNA缓冲液。3。移液器上下溶液上下3-5次,避免引入气泡并牢固密封管(或多孔板)。4。在室温下将溶液放在轨道搅拌机/振动器上30分钟。5。简短离心管,包含siRNA,以确保将溶液收集在管子底部。6。使用260 nm处的紫外分光光度法验证siRNA的浓度。对于siRNA,1 µm = 13.3 ng/µl。对于microRNA模拟,1 µm = 14.1 ng/µl和microRNA发夹抑制剂,1 µm = 18.5 ng/µl请参阅FAQ,有关其他信息。7。RNA可以立即使用,或将等分等分为较小的体积以限制冻融周期的数量。重悬于的siRNA应将其存储在-20°C中,以手动除霜或非周期冰柜。在4°C下存储最多可容纳6周。