抗肿瘤治疗通常包括化疗、放疗或两者结合。大多数癌症患儿接受标准剂量化疗,但高风险血液系统恶性肿瘤患儿、某些实体瘤患儿和疾病复发患儿通常需要高剂量化疗(+/- 放疗),然后进行造血干细胞移植 (HSCT)。一些治疗方案包括放疗;如果放疗范围包括脾脏(剂量 >10 Gy),则可能出现功能性脾功能减退或无脾。这些不同的治疗形式对免疫系统和免疫缺陷程度有不同的影响。免疫改变反映在中性粒细胞、淋巴细胞、免疫球蛋白水平以及针对先前感染和疫苗接种的特异性抗体的下降。这导致感染的易感性和严重程度增加。幸运的是,大多数疫苗可预防疾病 (VPD) 现在很少见;然而,某些疾病的风险仍然很大,部分原因是移民和旅行增加,以及疫苗更新不良。 VPD 可能与高发病率和死亡率相关,尤其是在免疫功能低下的患者中。鉴于接受癌症治疗的儿童(尤其是 HSCT 接受者)的免疫缺陷,重要的是确保他们在治疗期间和治疗完成后都能免受 VPD 的侵害。这可以通过在免疫抑制治疗期间和治疗完成后的平衡免疫恢复时间点优化儿童的疫苗接种策略来实现,以避免疫苗副作用(尤其是活疫苗)并实现最佳免疫反应。鉴于恶性疾病及其治疗方案的多样性,很难为每种疾病提出不同的时间表。相反,将他们分为接受标准剂量化疗的儿童和接受高剂量化疗后进行异基因或自体 HSCT 的儿童是合理的。对于接受其他方式治疗的儿童,例如嵌合抗原受体 T 细胞疗法 (CAR-T) 或接受 B 细胞耗竭疗法(例如利妥昔单抗)的儿童,已发表的数据有限,发表的指导也很少。 CAR-T 接受者的疫苗接种(或重新接种)方法应根据治疗完成时间以及儿童是否(以及何时)接受过 HSCT 进行个性化咨询,这会影响是否建议进行标准化疗加强疫苗接种或重新接种计划。此外,许多 CAR-T 接受者患有持续的 B 细胞发育不全和低丙种球蛋白血症。此类患者将接受静脉注射免疫球蛋白 (IVIg)。在 B 细胞耗竭治疗后,如果免疫球蛋白浓度和 B 细胞数量已经恢复,则遵循标准化疗加强方法似乎是合理的。
(Hidalgo等人,2022),这可能会阻止这种畸形,并且由于流产率未知。出于相同的原因,只有少数前瞻性,纵向和精心设计的Chiari II研究。In addition to the hallmark radiological findings [caudal displacement of posterior fossa content, inferior displacement of the cervical spinal cord, enlargement of ventricles, and (myelo)meningocele] in patients with Chiari II, there are a number of associated brain malformations [e.g., cerebellar hypoplasia ( Van den Hof et al.,1990年),胶体融合和直肠喙(Nagaraj et al。,2017年),Harrary Massa Intermedia和Habenular佣金和松果体的延伸(Gooding等人,1967年),call体和室脑周围淋巴结异构的失调(Hino-Shishikura等人。,2012年),颅神经和累加狭窄的发育不全(Tubbs and Oakes,2013)]。此外,Chiari II经常与次生发现有关,即脊柱异常[例如,platybasia(Cogan and Barrows,1954),脊柱侧弯(Cesmebasi etal。,2015年)],脊髓[,2011年),脂肪素细胞酯(Geerdink等人,2012年),Dibytyatomyelia(Parmar等人,2003)]和脑膜[,2012)]。这种相关发现的广泛调色板支持了Chiari II患者对整个中枢神经系统(CNS)和支持它的非CNS器官系统的发育异常的概念。,2008年; Kostovic和Vasung,2009年; Vasung等。此外,人胎儿脑发育的重要组成部分是瞬态胎儿室,其中包括心室区域,室内区域,中间区域,子板带,皮质板和边缘区(Bystron等人),2016年)。由于其中发生的事件,包括细胞增殖,迁移,突触发生,修剪,细胞死亡,面积的指定和轴突髓鞘形成,隔室是胎儿发育不可或缺的(Kostovic and Vasung,2009; Kang等人,2009; Kang等人。,2011年)。因此,表征Chiari II中瞬时胎儿区域的区域生长和发展可能与更好地理解其病理生理学有关。最后,尽管Chiari II的病理生理学仍然未知,但开放脊髓障碍(即腰椎脑膜关脉和/或脊髓脑膨出)之间的密切关联也表示赞成“ CSF泄漏理论”(McLone and Knepper,1989; McLone等; McLone等。根据该理论,后窝含量的尾部位移发生在脑脊液渗漏的脊柱泄漏处,这是由于神经孔的尾尾末端的非封闭末端引起的脊柱水平,大约在26天的受孕期间(Pexieder和Jelínek,Jelínek,1970; 1970; McLone and Kneperper and Kneperper,1989年)。此外,脑积水和脊椎队是与CSF相关的另外两个与Chiari II相关的发现,以及脑室的增大,这是一种与异常的产前脑发育有关的产前发现(Duy等。,2022b; Vasung等。,2022)。,2018年)。,2019,2021)和脑发育异常(Rollins等人,2021)。在脑力头的Chiari II患者中分流的产前或产后放置的大小与更好的神经发育结果没有联系(Houtrow等人因此,在某些情况下,其他可能会解释出更糟的神经发育结果。胎儿MRI目前用于量化区域脑体积并表征正常(Vasung等人因此,我们研究的目的是使用胎儿MRI来表征
对 MIRAGE 综合征进行基础研究以开发治疗策略 MIRAGE 综合征是一种最近发现的遗传性疾病,其特点是六个主要特征,包括骨髓发育不良、感染、生长受限、肾上腺发育不全、生殖器表型和肠病。“MIRAGE”是这六个特征的首字母缩写。MIRAGE 综合征是由 SAMD9 突变引起的,该突变编码一种功能未知的蛋白质。MIRAGE 综合征是一种罕见/难治性疾病。日本仅发现 11 名患者。MIRAGE 综合征是一种危及生命的疾病,事实上,超过一半的患者在 2 岁前死亡。我们开展“对 MIRAGE 综合征进行基础研究以开发治疗策略”的研究旨在获得有关 MIRAGE 综合征的基本知识和见解,从而有助于开发治疗方法。成海聪(国立儿童保健与发育研究所分子内分泌科主任)建立了 MIRAGE 综合征的 HEK293 细胞模型,研究人员可以通过该模型重现患者细胞的生长受限情况。利用该模型,他测试了大约 1,500 种之前鉴定的小化合物,以寻找治疗 MIRAGE 综合征的潜在药物。然而,在初步筛选中尚未发现任何有效的化合物。目前,SAMD9 的功能在很大程度上尚不清楚。鉴定 SAMD9 的功能对于阐明 MIRAGE 综合征的分子机制至关重要。为此,成海聪和金仓耕介(东京医科大学分子病理学系助理教授)开始了两种基于细胞的实验。一种是蛋白质组学筛选。在该实验中,以上述 MIRAGE 综合征的 HEK293 细胞模型的细胞提取物为对象,用抗体偶联树脂捕获 SAMD9,并寻找与 SAMD9 结合的分子。已确定了几种候选分子,目前正在验证中。另一个是基因组学筛选。Narumi 和 Kanekura 使用基因编辑技术应用了一种新的基因敲除筛选方法,现在正试图确定负责 SAMD9 功能的生物学途径。基于细胞的方法对于研究 MIRAGE 综合征的分子和细胞水平发病机制是有效的。另一方面,这些方法不适合阐明器官和身体水平的发病机制。它需要对 MIRAGE 综合征患者进行深入表征,并重现该疾病的动物模型。为了对患者进行深入分析,Tomonobu Hasegawa(庆应义塾大学医学院儿科教授)与日本儿科内分泌学会和日本新生儿健康与发展学会一起开始了全国性的 MIRAGE 综合征调查。这项调查将有助于找到更多患者,并将有助于阐明该综合征的临床表现。此外,为了建立MIRAGE综合征的动物模型,木下昌人(京都大学农学研究科应用生物科学系助理教授)和谷口义人(预防医学和公共卫生系教授)正在培育基因工程的青鳉(Medaka)。石井智宏(庆应义塾大学医学院儿科助理教授)也在培育基因工程小鼠。今年,靶向载体的构建已经完成。这些实验将在明年建立突变动物系。
诊断代码描述D76.1胞藻淋巴结型胞毒性背景余毛瘤是一种与干扰素伽马(IFNγ)结合并中和它的单克隆抗体。非临床数据表明,通过超级分泌,IFNγ参与了HLH。emapalumab降低了CXCL9的血浆浓度,这是IFNγ诱导的趋化因子。临床证据在研究NI -0501-04,第2-3期,多中心,单臂临床试验中评估了Emapalumab在HLH治疗中的疗效。该研究旨在研究Emapalumab的药代动力学,疗效和安全性在疑似或确认的原发性HLH的儿科患者中,他们天真地治疗或对标准HLH疗法没有反应或对标准HLH疗法的反应或不耐受。在研究中,根据患者病情和造血干细胞移植的患者病情和供体的可用性,对患者进行了长达8周的治疗,但不少于4周。最初,emapalumab每三天给1 mg/kg剂量,直到第15天,此后每周两次给药。允许剂量增加,最多10 mg/kg/day,也对患者进行了地塞米松。主要疗效终点是在治疗结束时的总体响应,定义为使用协议指定标准实现完整或部分响应或HLH改进。二级功效终点包括对HLH疾病的持续控制的度量,以便患者可以接受造血干细胞移植以及生存。总体而言,64.7%的研究患者在治疗结束时具有总体反应。总体而言,有88.2%的患者对Emapalumab治疗做出反应,疾病控制在开始后不久进行疾病治疗,中位时间为8天。总体而言,有65%的患者接受了造血干细胞移植,植入率为86.4%。造血干细胞移植事件的无事件生存期为81.8%。3,5研究NI-0501-05是一项多中心后续研究,旨在收集通过NI-0501-04接受emapalumab的患者的安全性和结果数据,并富有同情的使用程序。患者1年。在修复阶段的NI-0501-04/05研究中,最常见的不良事件包括细菌,真菌和病毒感染(56%)(56%)和加重状态加重(50.0%)(50.0%)(包括HLH重新激活,耀斑,火炬,恶化)。其他常见的AE在预科期间包括高血压(41.2%),与输注相关的反应(27%)和发育不全(24%)。此外,NI-0501-04/-05研究中有56%的患者报告了预处理期间的感染。在调节后期,最常见的不良事件是上毒(52.2%)和高血压(43.5%),以及常见的造血干细胞移植并发症。截至2017年7月20日,通过富有同情心的使用计划接受药物的51例患者中有20名和NI-0501-04/05研究发生了致命的不良事件。据报道,致命的不良事件与HLH的并发症一致,而不是与用手al的治疗有关。关于严重的不良事件,在调查期间报告的最常见事件是加重HLH(18.9%)和呼吸衰竭(9.4%)。造血干细胞移植后常见的严重不良事件包括加重和植入失败(每个11.1%)和肠道上的急性GVHD,肠道急性GVHD,生育综合征,克雷伯氏菌败血症和化粪池休克(每人7.4%)。导致治疗提取的不良事件包括传播
诊断代码描述D76.1胞藻淋巴结型胞毒性背景余毛瘤是一种与干扰素伽马(IFNγ)结合并中和它的单克隆抗体。非临床数据表明,IFNγ通过过度分泌与HLH有关。emapalumab降低了CXCL9的血浆浓度,这是IFNγ诱导的趋化因子。益处考虑一些覆盖范围证书允许在满足某些情况时覆盖实验/研究/未经证实的治疗危及生命的疾病。必须咨询成员特定的福利计划文件,以做出此服务的覆盖范围决策。某些州要求在某些情况下或在某些情况下满足某些情况下的某些诊断中使用药物的效益覆盖范围。在适用此类授权的地方,它们在福利文件或医疗或药物政策中取代语言。在满足某些疾病时,可能会发生其他未经证实的服务来治疗严重罕见疾病的福利覆盖范围。请参阅解决严重罕见疾病治疗的政策和程序。临床证据在研究NI-0501-04(2-3期,多中心,单臂临床试验)中评估了Emapalumab在HLH治疗中的疗效。该研究旨在研究Emapalumab的药代动力学,疗效和安全性在疑似或确认的原发性HLH的儿科患者中,他们天真地治疗或对标准HLH疗法没有反应或对标准HLH疗法的反应或不耐受。最初,emapalumab每三天给1mg/kg剂量,直到第15天,此后每周两次给药。在研究中,根据患者病情和造血干细胞移植的患者病情和供体的可用性,对患者进行了长达8周的治疗,但不少于4周。剂量增加,最多可达10mg/kg/day,也对患者进行了地塞米松。主要疗效终点是在治疗结束时的总体响应,定义为使用协议指定标准实现完整或部分响应或HLH改进。二级功效终点包括对HLH疾病的持续控制的度量,以便患者可以接受造血干细胞移植以及生存。总体而言,64.7%的研究患者在治疗结束时具有总体反应。总体而言,有88.2%的患者对Emapalumab治疗做出反应,疾病控制在开始后不久进行疾病治疗,中位时间为8天。总体而言,有65%的患者接受了造血干细胞移植,植入率为86.4%。造血干细胞移植事件的无事件生存期为81.8%。3,5研究NI-0501-05是一项多中心后续研究,旨在收集通过NI-0501-04接受Emapalumab的患者的安全和结果数据,并富有同情心的使用程序。患者1年。其他常见的AE在预科期间包括高血压(41.2%),与输注相关的反应(27%)和发育不全(24%)。在调节阶段的NI-0501-04/05研究中,最常见的不良事件包括细菌,真菌和病毒感染(56%)(56%)和加重状态加重(50.0%)(50.0%),其中包括HLH重新激活,耀斑,火炬,恶化。此外,NI-0501-04/-05研究中有56%的患者报告了预处理期间的感染。在调节后期,最常见的不良事件是上毒(52.2%)和高血压(43.5%),以及常见的造血干细胞移植并发症。截至2017年7月20日,通过富有同情心的使用计划接受药物的51例患者中有20名和NI-0501-04/05研究发生了致命的不良事件。致命的不良事件
在《国际分子科学杂志》(International of Molecular Sciences)期刊中,我们包括有关“新兴的心脏病生物标志物”的洞察评论和研究论文。我们首先想与“生物标志物”的概念分享有关此主题的一些背景。创新和特定的生物标志物可以作为检测心血管疾病的新诊断标记,以指导预后和新兴的治疗剂。生物标志物被定义为“客观测量和评估的特征,作为对治疗干预的正常生物学过程,致病过程或药理反应的指标” [1]。根据定义,生物标志物是生物过程的量化特征,但是要识别生物标志物需要确定其相关性和有效性[2]。与弹性相关的标记在当前正在使用的最有效的生物标志物中很突出。创新的生物标志物已成为能量稳态领域的相关贡献者,并且似乎是各种心血管和代谢性疾病的有效生物标志物。在这些假定的和特定的生物标志物中,TGF-beta超级家庭的几个成员,GDF15,GDF11,新出现的心脏因子,miRNA和MiRNA和标志物通过蛋白质组学与氧化应激有关,都涉及心血管疾病。对其循环水平的评估可能会为疾病进程提供新的见解[3-5]。本期特刊由三篇文章和四个评论组成,这些评论在下面概述。carnosine属于组酰二肽家族。pozo-agundo和合着者[6]在第一次报告中报告了与遗传性出血性teleangiectasia(HHT)相关的血浆外泌体中差异表达的miRNA的特定性质。从细胞释放的外泌体已显示出携带不同的核酸,包括microRNA(miRNA)。miRNA显着调节基因表达的转录后抑制细胞生长和代谢[7,8]。HHT是一种血管发育不全,具有常染色体显性特征,这些特征是通过复发性和自发性鼻子出血(epistaxis),毛皮皮疾病以及动静脉畸形(AVM)的特征,内部器官:肺,肝脏,肝脏和大脑。生物信息学分析指出了HHT中影响的生物学功能。他们中的大多数具有强大的诊断价值,并使我们能够区分HHT1和HHT2。数据表明动静脉畸形的细胞成分决定了这种外泌体miRNA特征。结果表明,这些外泌体miRNA在HHT的病理生理学中的关键功能作用。HHT是一种罕见的疾病,估计患病率约为1/8000。HHT患者在生命的第三或第四个十年左右,直到其脑力结实之前,似乎没有症状。 这种情况通常会导致多年诊断延迟,这促使需要早期分子诊断。 这项研究的结果为分子诊断提供了刺激的可能性,并可能有助于建立特定的生物标志物特征。 这些HHT患者在生命的第三或第四个十年左右,直到其脑力结实之前,似乎没有症状。这种情况通常会导致多年诊断延迟,这促使需要早期分子诊断。这项研究的结果为分子诊断提供了刺激的可能性,并可能有助于建立特定的生物标志物特征。这些o'toole and Interors [9]和Oosterwijk和合着者[10]进行了全面的研究,旨在指定肌肽和钙锁蛋白在心血管疾病(CVD)和代谢疾病患者中的作用。这是一种天然存在的二肽(β-丙氨酸-L-抗肽),在高度代谢组织(例如骨骼肌,心脏和大脑)中发现。
1。Ginja MMD,Silvestre AM,Gonzalo-Orden JM,Ferreira Aja。诊断,遗传控制和犬髋关节发育不良的预防性管理:评论。兽医J。 2010; 184(3):269-276。 doi:10.1016/j.tvjl.2009.04.009 2。 Dueland RT,Adams Wm,Patricelli AJ,Linn KA,Crump PM。 犬髋关节发育不良,通过少年耻骨分解治疗。 第一部分:计算机断层扫描和干扰指数的两年结果。 VET COMP ORTHOP TRAUMATOL。 2010; 23(5):306-317。 doi:10.3415/vcot-09-04-0045 3。 Guilliard M.预测犬髋关节发育不良的pennhip方法。 实践。 2014; 36(2):66-74。 https://doi.org/10.1136/inp.f7486 4。 Worth AJ,Laven RA,Erceg VH。 评估新西兰兽医协会髋关节发育不良评分系统与德国牧羊犬的pennhip分心指数之间的协议。 n Z Vet J。 2009; 57(6):338-345。 doi:10.1080/00480169.2009.64720 5。 Klever J,BrühschweinA,Wagner S,Reese S,Meyer-Lindenberg A. 比较诺贝格角度和分心指数的可靠性作为狗髋关节松弛的测量。 VET COMP ORTHOP TRAUMATOL。 2020; 33(4):274-278。 doi:10.1055/s-0040-1709460 6。 Dueland RT,Patricelli AJ,Adams Wm,Linn KA,Crump PM。 犬髋关节发育不良,通过少年耻骨分解治疗。 第二部分:两年临床结果。 VET COMP ORTHOP TRAUMATOL。 2010; 23(5):318-325。 doi:10.3415/vcot-09-04-0040 7。 Vezzoni A,Dravelli G,Vezzoni L等。 VET COMP ORTHOP TRAUMATOL。 8。兽医J。2010; 184(3):269-276。 doi:10.1016/j.tvjl.2009.04.009 2。 Dueland RT,Adams Wm,Patricelli AJ,Linn KA,Crump PM。 犬髋关节发育不良,通过少年耻骨分解治疗。 第一部分:计算机断层扫描和干扰指数的两年结果。 VET COMP ORTHOP TRAUMATOL。 2010; 23(5):306-317。 doi:10.3415/vcot-09-04-0045 3。 Guilliard M.预测犬髋关节发育不良的pennhip方法。 实践。 2014; 36(2):66-74。 https://doi.org/10.1136/inp.f7486 4。 Worth AJ,Laven RA,Erceg VH。 评估新西兰兽医协会髋关节发育不良评分系统与德国牧羊犬的pennhip分心指数之间的协议。 n Z Vet J。 2009; 57(6):338-345。 doi:10.1080/00480169.2009.64720 5。 Klever J,BrühschweinA,Wagner S,Reese S,Meyer-Lindenberg A. 比较诺贝格角度和分心指数的可靠性作为狗髋关节松弛的测量。 VET COMP ORTHOP TRAUMATOL。 2020; 33(4):274-278。 doi:10.1055/s-0040-1709460 6。 Dueland RT,Patricelli AJ,Adams Wm,Linn KA,Crump PM。 犬髋关节发育不良,通过少年耻骨分解治疗。 第二部分:两年临床结果。 VET COMP ORTHOP TRAUMATOL。 2010; 23(5):318-325。 doi:10.3415/vcot-09-04-0040 7。 Vezzoni A,Dravelli G,Vezzoni L等。 VET COMP ORTHOP TRAUMATOL。 8。2010; 184(3):269-276。 doi:10.1016/j.tvjl.2009.04.009 2。Dueland RT,Adams Wm,Patricelli AJ,Linn KA,Crump PM。犬髋关节发育不良,通过少年耻骨分解治疗。第一部分:计算机断层扫描和干扰指数的两年结果。VET COMP ORTHOP TRAUMATOL。 2010; 23(5):306-317。 doi:10.3415/vcot-09-04-0045 3。 Guilliard M.预测犬髋关节发育不良的pennhip方法。 实践。 2014; 36(2):66-74。 https://doi.org/10.1136/inp.f7486 4。 Worth AJ,Laven RA,Erceg VH。 评估新西兰兽医协会髋关节发育不良评分系统与德国牧羊犬的pennhip分心指数之间的协议。 n Z Vet J。 2009; 57(6):338-345。 doi:10.1080/00480169.2009.64720 5。 Klever J,BrühschweinA,Wagner S,Reese S,Meyer-Lindenberg A. 比较诺贝格角度和分心指数的可靠性作为狗髋关节松弛的测量。 VET COMP ORTHOP TRAUMATOL。 2020; 33(4):274-278。 doi:10.1055/s-0040-1709460 6。 Dueland RT,Patricelli AJ,Adams Wm,Linn KA,Crump PM。 犬髋关节发育不良,通过少年耻骨分解治疗。 第二部分:两年临床结果。 VET COMP ORTHOP TRAUMATOL。 2010; 23(5):318-325。 doi:10.3415/vcot-09-04-0040 7。 Vezzoni A,Dravelli G,Vezzoni L等。 VET COMP ORTHOP TRAUMATOL。 8。VET COMP ORTHOP TRAUMATOL。2010; 23(5):306-317。 doi:10.3415/vcot-09-04-0045 3。 Guilliard M.预测犬髋关节发育不良的pennhip方法。 实践。 2014; 36(2):66-74。 https://doi.org/10.1136/inp.f7486 4。 Worth AJ,Laven RA,Erceg VH。 评估新西兰兽医协会髋关节发育不良评分系统与德国牧羊犬的pennhip分心指数之间的协议。 n Z Vet J。 2009; 57(6):338-345。 doi:10.1080/00480169.2009.64720 5。 Klever J,BrühschweinA,Wagner S,Reese S,Meyer-Lindenberg A. 比较诺贝格角度和分心指数的可靠性作为狗髋关节松弛的测量。 VET COMP ORTHOP TRAUMATOL。 2020; 33(4):274-278。 doi:10.1055/s-0040-1709460 6。 Dueland RT,Patricelli AJ,Adams Wm,Linn KA,Crump PM。 犬髋关节发育不良,通过少年耻骨分解治疗。 第二部分:两年临床结果。 VET COMP ORTHOP TRAUMATOL。 2010; 23(5):318-325。 doi:10.3415/vcot-09-04-0040 7。 Vezzoni A,Dravelli G,Vezzoni L等。 VET COMP ORTHOP TRAUMATOL。 8。2010; 23(5):306-317。 doi:10.3415/vcot-09-04-0045 3。Guilliard M.预测犬髋关节发育不良的pennhip方法。实践。2014; 36(2):66-74。 https://doi.org/10.1136/inp.f7486 4。Worth AJ,Laven RA,Erceg VH。评估新西兰兽医协会髋关节发育不良评分系统与德国牧羊犬的pennhip分心指数之间的协议。n Z Vet J。2009; 57(6):338-345。 doi:10.1080/00480169.2009.64720 5。 Klever J,BrühschweinA,Wagner S,Reese S,Meyer-Lindenberg A. 比较诺贝格角度和分心指数的可靠性作为狗髋关节松弛的测量。 VET COMP ORTHOP TRAUMATOL。 2020; 33(4):274-278。 doi:10.1055/s-0040-1709460 6。 Dueland RT,Patricelli AJ,Adams Wm,Linn KA,Crump PM。 犬髋关节发育不良,通过少年耻骨分解治疗。 第二部分:两年临床结果。 VET COMP ORTHOP TRAUMATOL。 2010; 23(5):318-325。 doi:10.3415/vcot-09-04-0040 7。 Vezzoni A,Dravelli G,Vezzoni L等。 VET COMP ORTHOP TRAUMATOL。 8。2009; 57(6):338-345。 doi:10.1080/00480169.2009.64720 5。Klever J,BrühschweinA,Wagner S,Reese S,Meyer-Lindenberg A.比较诺贝格角度和分心指数的可靠性作为狗髋关节松弛的测量。VET COMP ORTHOP TRAUMATOL。 2020; 33(4):274-278。 doi:10.1055/s-0040-1709460 6。 Dueland RT,Patricelli AJ,Adams Wm,Linn KA,Crump PM。 犬髋关节发育不良,通过少年耻骨分解治疗。 第二部分:两年临床结果。 VET COMP ORTHOP TRAUMATOL。 2010; 23(5):318-325。 doi:10.3415/vcot-09-04-0040 7。 Vezzoni A,Dravelli G,Vezzoni L等。 VET COMP ORTHOP TRAUMATOL。 8。VET COMP ORTHOP TRAUMATOL。2020; 33(4):274-278。 doi:10.1055/s-0040-1709460 6。Dueland RT,Patricelli AJ,Adams Wm,Linn KA,Crump PM。犬髋关节发育不良,通过少年耻骨分解治疗。第二部分:两年临床结果。VET COMP ORTHOP TRAUMATOL。 2010; 23(5):318-325。 doi:10.3415/vcot-09-04-0040 7。 Vezzoni A,Dravelli G,Vezzoni L等。 VET COMP ORTHOP TRAUMATOL。 8。VET COMP ORTHOP TRAUMATOL。2010; 23(5):318-325。 doi:10.3415/vcot-09-04-0040 7。 Vezzoni A,Dravelli G,Vezzoni L等。 VET COMP ORTHOP TRAUMATOL。 8。2010; 23(5):318-325。 doi:10.3415/vcot-09-04-0040 7。Vezzoni A,Dravelli G,Vezzoni L等。VET COMP ORTHOP TRAUMATOL。 8。VET COMP ORTHOP TRAUMATOL。8。在犬髋关节发育不良的早期治疗中,保守管理和少年耻骨分解的比较。2008; 21(3):267-279。 Riser WH,Shirer JF。 髋关节发育不良:新生儿德国牧羊犬的coxafemoral异常。 J小动画实践。 1966; 7(1):7-12。 doi:10.1111/j.1748-5827.1966.tb04372.x 9。 Gold RM,Gregor TP,Huck JL,McKelvie PJ,Smith GK。 骨关节炎对拉布拉多猎犬髋关节的放射光度和一致性的影响。 javma。 2009; 234(12):1549-1554。 doi:10.2460/javma.234.12.1549 10。 Petazzoni M,Tamburro R.八只髋关节发育不全10-28个月的狗的双骨盆截骨术的临床结果。 兽医外科手术。 2022; 51(2):320-329。 doi:10.1111/vsu.13737 11。 Petazzoni M,Tamburro R,Nicetto T,Kowaleski MP。 评估通过修饰的三骨截骨术(2.5骨盆骨切开术)获得的背部髋臼覆盖范围:对尸体犬代码的离体研究。 VET COMP ORTHOP TRAUMATOL。 2012; 25(5):385-389。 doi:10.3415/vcot-11-08-0109 12。 Janssens Laa,Daems R,Pillin L,Vandekerckhove P,Van Dongen S.三骨骨盆截骨术,具有12.5°和20°Slocum-type板:38只狗中的短期前瞻性临床试验研究。 兽医外科手术。 2020; 49(7):1449-1457。 doi:10.1111/vsu.13471 13。 Johnston SA。 髋关节发育不良的保守和医疗管理。 兽医clin North Am小动画实践。 1992; 22(3):595-606。 doi:10.1016/ s0195-5616(92)50058-4 14。 div> Dycus DL,Levine D,Marcellin-little DJ。2008; 21(3):267-279。Riser WH,Shirer JF。髋关节发育不良:新生儿德国牧羊犬的coxafemoral异常。J小动画实践。1966; 7(1):7-12。 doi:10.1111/j.1748-5827.1966.tb04372.x 9。Gold RM,Gregor TP,Huck JL,McKelvie PJ,Smith GK。骨关节炎对拉布拉多猎犬髋关节的放射光度和一致性的影响。javma。2009; 234(12):1549-1554。 doi:10.2460/javma.234.12.1549 10。 Petazzoni M,Tamburro R.八只髋关节发育不全10-28个月的狗的双骨盆截骨术的临床结果。 兽医外科手术。 2022; 51(2):320-329。 doi:10.1111/vsu.13737 11。 Petazzoni M,Tamburro R,Nicetto T,Kowaleski MP。 评估通过修饰的三骨截骨术(2.5骨盆骨切开术)获得的背部髋臼覆盖范围:对尸体犬代码的离体研究。 VET COMP ORTHOP TRAUMATOL。 2012; 25(5):385-389。 doi:10.3415/vcot-11-08-0109 12。 Janssens Laa,Daems R,Pillin L,Vandekerckhove P,Van Dongen S.三骨骨盆截骨术,具有12.5°和20°Slocum-type板:38只狗中的短期前瞻性临床试验研究。 兽医外科手术。 2020; 49(7):1449-1457。 doi:10.1111/vsu.13471 13。 Johnston SA。 髋关节发育不良的保守和医疗管理。 兽医clin North Am小动画实践。 1992; 22(3):595-606。 doi:10.1016/ s0195-5616(92)50058-4 14。 div> Dycus DL,Levine D,Marcellin-little DJ。2009; 234(12):1549-1554。 doi:10.2460/javma.234.12.1549 10。Petazzoni M,Tamburro R.八只髋关节发育不全10-28个月的狗的双骨盆截骨术的临床结果。兽医外科手术。2022; 51(2):320-329。 doi:10.1111/vsu.13737 11。Petazzoni M,Tamburro R,Nicetto T,Kowaleski MP。评估通过修饰的三骨截骨术(2.5骨盆骨切开术)获得的背部髋臼覆盖范围:对尸体犬代码的离体研究。VET COMP ORTHOP TRAUMATOL。 2012; 25(5):385-389。 doi:10.3415/vcot-11-08-0109 12。 Janssens Laa,Daems R,Pillin L,Vandekerckhove P,Van Dongen S.三骨骨盆截骨术,具有12.5°和20°Slocum-type板:38只狗中的短期前瞻性临床试验研究。 兽医外科手术。 2020; 49(7):1449-1457。 doi:10.1111/vsu.13471 13。 Johnston SA。 髋关节发育不良的保守和医疗管理。 兽医clin North Am小动画实践。 1992; 22(3):595-606。 doi:10.1016/ s0195-5616(92)50058-4 14。 div> Dycus DL,Levine D,Marcellin-little DJ。VET COMP ORTHOP TRAUMATOL。2012; 25(5):385-389。 doi:10.3415/vcot-11-08-0109 12。 Janssens Laa,Daems R,Pillin L,Vandekerckhove P,Van Dongen S.三骨骨盆截骨术,具有12.5°和20°Slocum-type板:38只狗中的短期前瞻性临床试验研究。 兽医外科手术。 2020; 49(7):1449-1457。 doi:10.1111/vsu.13471 13。 Johnston SA。 髋关节发育不良的保守和医疗管理。 兽医clin North Am小动画实践。 1992; 22(3):595-606。 doi:10.1016/ s0195-5616(92)50058-4 14。 div> Dycus DL,Levine D,Marcellin-little DJ。2012; 25(5):385-389。 doi:10.3415/vcot-11-08-0109 12。Janssens Laa,Daems R,Pillin L,Vandekerckhove P,Van Dongen S.三骨骨盆截骨术,具有12.5°和20°Slocum-type板:38只狗中的短期前瞻性临床试验研究。兽医外科手术。2020; 49(7):1449-1457。 doi:10.1111/vsu.13471 13。Johnston SA。 髋关节发育不良的保守和医疗管理。 兽医clin North Am小动画实践。 1992; 22(3):595-606。 doi:10.1016/ s0195-5616(92)50058-4 14。 div> Dycus DL,Levine D,Marcellin-little DJ。Johnston SA。髋关节发育不良的保守和医疗管理。兽医clin North Am小动画实践。1992; 22(3):595-606。 doi:10.1016/ s0195-5616(92)50058-4 14。 div> Dycus DL,Levine D,Marcellin-little DJ。1992; 22(3):595-606。 doi:10.1016/ s0195-5616(92)50058-4 14。 div>Dycus DL,Levine D,Marcellin-little DJ。用于管理犬髋关节发育不良的身体康复。兽医clin North Am小动画实践。2017; 47(4):823-850。 doi:10.1016/j.cvsm.2017.02.006 15。 Liska WD,以色列SK。 狗总髋关节置换后的发病率和死亡率。 VET COMP ORTHOP TRAUMATOL。 2018; 31(3):218-221。 doi:10.1055/s-0038-1632365 16。 DENNY HR,LINNELL M,MADDOX TW,COMERFORD EJ。 使用无胶线螺纹杯和茎的犬总髋关节置换:55例审查。 J小动画实践。 2018; 59(6):350-356。 doi:10.1111/ jsap.12827 17。 div> Schmaedecke A,Saut JPE,Ferrigno Cra。 对狗的髋臼骨膜神经纤维的定量分析。 VET COMP ORTHOP TRAUMATOL。 2008; 21(5):413-417。 18。 Ferrigno Cra,Schmaedecke A,Ferraz VCM。 一种新的外科手术方法,用于狗的髋臼神经。 Pesqui兽医胸罩。 2007; 27(2):61-63。 19。 Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。 狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。 Pesqui兽医胸罩。 2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。2017; 47(4):823-850。 doi:10.1016/j.cvsm.2017.02.006 15。Liska WD,以色列SK。狗总髋关节置换后的发病率和死亡率。VET COMP ORTHOP TRAUMATOL。 2018; 31(3):218-221。 doi:10.1055/s-0038-1632365 16。 DENNY HR,LINNELL M,MADDOX TW,COMERFORD EJ。 使用无胶线螺纹杯和茎的犬总髋关节置换:55例审查。 J小动画实践。 2018; 59(6):350-356。 doi:10.1111/ jsap.12827 17。 div> Schmaedecke A,Saut JPE,Ferrigno Cra。 对狗的髋臼骨膜神经纤维的定量分析。 VET COMP ORTHOP TRAUMATOL。 2008; 21(5):413-417。 18。 Ferrigno Cra,Schmaedecke A,Ferraz VCM。 一种新的外科手术方法,用于狗的髋臼神经。 Pesqui兽医胸罩。 2007; 27(2):61-63。 19。 Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。 狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。 Pesqui兽医胸罩。 2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。VET COMP ORTHOP TRAUMATOL。2018; 31(3):218-221。 doi:10.1055/s-0038-1632365 16。 DENNY HR,LINNELL M,MADDOX TW,COMERFORD EJ。 使用无胶线螺纹杯和茎的犬总髋关节置换:55例审查。 J小动画实践。 2018; 59(6):350-356。 doi:10.1111/ jsap.12827 17。 div> Schmaedecke A,Saut JPE,Ferrigno Cra。 对狗的髋臼骨膜神经纤维的定量分析。 VET COMP ORTHOP TRAUMATOL。 2008; 21(5):413-417。 18。 Ferrigno Cra,Schmaedecke A,Ferraz VCM。 一种新的外科手术方法,用于狗的髋臼神经。 Pesqui兽医胸罩。 2007; 27(2):61-63。 19。 Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。 狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。 Pesqui兽医胸罩。 2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。2018; 31(3):218-221。 doi:10.1055/s-0038-1632365 16。DENNY HR,LINNELL M,MADDOX TW,COMERFORD EJ。 使用无胶线螺纹杯和茎的犬总髋关节置换:55例审查。 J小动画实践。 2018; 59(6):350-356。 doi:10.1111/ jsap.12827 17。 div> Schmaedecke A,Saut JPE,Ferrigno Cra。 对狗的髋臼骨膜神经纤维的定量分析。 VET COMP ORTHOP TRAUMATOL。 2008; 21(5):413-417。 18。 Ferrigno Cra,Schmaedecke A,Ferraz VCM。 一种新的外科手术方法,用于狗的髋臼神经。 Pesqui兽医胸罩。 2007; 27(2):61-63。 19。 Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。 狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。 Pesqui兽医胸罩。 2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。DENNY HR,LINNELL M,MADDOX TW,COMERFORD EJ。使用无胶线螺纹杯和茎的犬总髋关节置换:55例审查。 J小动画实践。 2018; 59(6):350-356。 doi:10.1111/ jsap.12827 17。 div> Schmaedecke A,Saut JPE,Ferrigno Cra。 对狗的髋臼骨膜神经纤维的定量分析。 VET COMP ORTHOP TRAUMATOL。 2008; 21(5):413-417。 18。 Ferrigno Cra,Schmaedecke A,Ferraz VCM。 一种新的外科手术方法,用于狗的髋臼神经。 Pesqui兽医胸罩。 2007; 27(2):61-63。 19。 Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。 狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。 Pesqui兽医胸罩。 2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。使用无胶线螺纹杯和茎的犬总髋关节置换:55例审查。J小动画实践。2018; 59(6):350-356。 doi:10.1111/ jsap.12827 17。 div> Schmaedecke A,Saut JPE,Ferrigno Cra。 对狗的髋臼骨膜神经纤维的定量分析。 VET COMP ORTHOP TRAUMATOL。 2008; 21(5):413-417。 18。 Ferrigno Cra,Schmaedecke A,Ferraz VCM。 一种新的外科手术方法,用于狗的髋臼神经。 Pesqui兽医胸罩。 2007; 27(2):61-63。 19。 Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。 狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。 Pesqui兽医胸罩。 2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。2018; 59(6):350-356。 doi:10.1111/ jsap.12827 17。 div>Schmaedecke A,Saut JPE,Ferrigno Cra。对狗的髋臼骨膜神经纤维的定量分析。VET COMP ORTHOP TRAUMATOL。 2008; 21(5):413-417。 18。 Ferrigno Cra,Schmaedecke A,Ferraz VCM。 一种新的外科手术方法,用于狗的髋臼神经。 Pesqui兽医胸罩。 2007; 27(2):61-63。 19。 Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。 狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。 Pesqui兽医胸罩。 2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。VET COMP ORTHOP TRAUMATOL。2008; 21(5):413-417。 18。 Ferrigno Cra,Schmaedecke A,Ferraz VCM。 一种新的外科手术方法,用于狗的髋臼神经。 Pesqui兽医胸罩。 2007; 27(2):61-63。 19。 Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。 狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。 Pesqui兽医胸罩。 2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。2008; 21(5):413-417。18。Ferrigno Cra,Schmaedecke A,Ferraz VCM。一种新的外科手术方法,用于狗的髋臼神经。Pesqui兽医胸罩。2007; 27(2):61-63。 19。 Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。 狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。 Pesqui兽医胸罩。 2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。2007; 27(2):61-63。19。Ferrigno Cra,Schmaedecke A,Oliveira LM,D'ávilaRS,Yamamoto EY,Saut JPE。狗的颅和背部髋臼治疗技术治疗狗的髋关节发育不良:97例评估360天。Pesqui兽医胸罩。2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。 Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。2007; 27(8):333-340。 https://doi.org/10.1590/s0100- 736x2007000800003 20。Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。 对所有者对狗的慢性疼痛的看法的定性研究。 javma。 2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。Davis KN,Hellyer PW,Carr ECJ,Wallace JE,Kogan LR。对所有者对狗的慢性疼痛的看法的定性研究。javma。2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。 Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。2019; 254(1):88-92。 doi:10.2460/javma.254.1.88 21。Winders CLB,Vaughn WL,Birdwhistell KE,Holsworth IG,Franklin SP。通过颅外侧方法或腹侧方法的股骨头和颈部切除精度。VET COMP ORTHOP TRAUMATOL。 2018; 31(2):102-107。 doi:10.3415/vcot-17-07-0099VET COMP ORTHOP TRAUMATOL。2018; 31(2):102-107。 doi:10.3415/vcot-17-07-00992018; 31(2):102-107。 doi:10.3415/vcot-17-07-0099
当您沿着蜿蜒的小路攀登到以色列的卡梅尔山洞穴时,很容易想象到史前时期的郁郁葱葱的环境。地中海气候四季温和宜人,温度波动适中。附近的小溪提供了可靠的饮用水源,而周围的森林里充满了野生动物,包括鹿、瞪羚、犀牛和野猪。相邻的山谷是史前谷物和果树的家园。卡梅尔山洞穴是数千年来众多狩猎采集者的理想场所,提供温暖气候、生态多样性和原材料的独特组合。该遗址现已被列为联合国教科文组织世界遗产,考古发现揭示了一系列跨越数十万年的史前定居点,智人和尼安德特人之间可能存在接触。随着人类进化的不断推进,我们的祖先掌握了新的技能,掌握了使用火的方法,并创造了越来越复杂的工具,这些工具由燧石和石灰石制成。这些进步背后的关键驱动力是人类大脑的显著增长和复杂性。人类大脑非同寻常,其体积大、压缩性强、复杂性是其他物种无法比拟的。在过去的六百万年里,人类大脑的体积增加了两倍,其中大部分转变发生在 20 万至 80 万年前。然而,这种增长并不是人类独有的;为什么我们发展出了如此先进的大脑,而其他物种却没有实现类似的认知飞跃?一种可能的解释是,拥有先进的大脑使我们能够实现地球上其他物种无法比拟的安全和繁荣水平。然而,现实情况更加复杂。趋同进化是一种现象,即相似的特征在不同物种中独立出现。例如,昆虫、鸟类、蝙蝠、鱼类和海洋哺乳动物都发展出了独特的体形,以在水下生存。然而,人类拥有独特的能力,可以创作复杂的艺术、文学和哲学作品,以及发明犁、轮子和互联网等技术——而这些技术在我们这个物种中只进化过一次。尽管有这么多优势,但为什么这种强大的大脑在自然界中如此罕见?答案部分在于两个主要缺点:它消耗大量能量(占身体总能量的 20%),而且大脑体积大,使分娩更加困难。因此,人类婴儿出生时大脑发育不全,需要数年才能成熟。这种脆弱性促使研究人员研究驱动大脑发育的力量。生态假说认为,环境压力推动了人类大脑的进化,因为我们的祖先适应了不断变化的气候和栖息地。那些拥有更高级大脑的人可以找到新的食物来源、制定策略并开发技术来生存。社会假说认为,复杂社会中合作、竞争和贸易的需求为那些拥有更复杂大脑的人提供了进化优势。此外,说服、操纵、奉承、讲述和取悦他人的能力(这些对于社会地位和生存都至关重要)刺激了大脑的发育和语言能力。文化假说强调了人类大脑吸收信息并将其代代相传的能力,这使得人类能够有效地从过去的经验中学习,并提高在不同环境中的生存能力。人类婴儿的身体无助掩盖了他们大脑独特的学习能力,这种能力使他们能够掌握和保留有助于生存的文化规范。性选择可能也发挥了一定作用,人类会偏爱拥有先进大脑的配偶,即使他们没有明显的进化优势。这些复杂的大脑可能发出了对保护和抚养孩子很重要的隐形品质,使潜在的伴侣更具吸引力。人类大脑的进化推动了人类独特的进步,推动了技术进步。这种迭代机制导致了技术越来越复杂,而这些技术反过来又塑造了未来的进化过程,使人类能够适应不断变化的环境并进一步发展他们的技术。值得注意的是,对火的掌握使早期人类能够烹饪食物,通过减少消化的能量消耗,释放颅骨空间,刺激了大脑的进一步生长。这种强化循环可能促进了烹饪技术的创新,从而导致大脑进一步发育。人类的手也随着技术的发展而进化,特别是狩猎工具和烹饪用具。当人类掌握了石雕和木矛制作技术后,熟练的猎人获得了进化优势,可以更可靠地养家糊口,并将更多孩子抚养成人。这种性质的正反馈循环在整个历史中都出现了:环境变化和技术创新促进了人口增长,并引发了对新栖息地和工具的适应;反过来,这些适应增强了我们操纵环境和创造新技术的能力。这个循环对于理解人类的旅程和解开成长之谜至关重要。数百万年来,人类以小群体的形式在非洲繁衍生息,不断提高技术、社交和认知能力。随着他们成为更熟练的狩猎者和采集者,他们的数量显著增加,最终导致生存空间和资源短缺。一旦环境条件允许,人类就开始向其他大陆扩张,寻找新的肥沃地区。大约两百万年前,第一个人类物种直立人传播到欧亚大陆。尽管早期智人确实走出了非洲,他们最终灭绝或因冰河时期恶劣的气候条件而撤退到非洲。大约 15 万年前,在非洲,所有现代人类的共同祖先出现了。这位非洲女性的血统最终催生了当今地球上的所有人类种群。被广泛接受的“走出非洲”理论认为,早在 6 万至 9 万年前,智人就大规模迁徙离开非洲,导致解剖学上的现代人类在全球传播。这些早期人类通过两条主要路线迁徙:一条经黎凡特,另一条经阿拉伯半岛。他们在 7 万多年前到达东南亚,大约 47,000-65,000 年前到达澳大利亚,近 45,000 年前到达欧洲,大约 25,000 年前到达白令海峡,并最终在大约 14,000-23,000 年前深入美洲。随着人类定居在新的环境中,他们获得了新的资源,并开始迅速繁衍。这种增长带来了更大的技术多样性,促进了创新和人口进一步扩张。然而,随着人口的增长,肥沃的土地和资源也越来越稀缺,最终迫使人类走向另一种生存方式:农业。智人的转变是惊人的。随着人们逐渐从游牧生活方式转向定居生活,全球的艺术、科学、写作和技术都取得了重大进步。值得注意的是,位于黎凡特的纳图夫文化(公元前 13,000-9500 年)的考古证据表明,一些社区在农业开始之前就过渡到永久性住所,这与传统理解相矛盾。尽管这些早期定居者主要是狩猎采集者,但他们住在稳定的住宅中,这些住宅由干石地基和灌木丛上层建筑建造而成。然而,对于当时的大多数人类来说,正是向农业的过渡推动了定居主义的发展。农业革命,又称新石器革命,最早出现在肥沃的新月地带——底格里斯河和幼发拉底河沿岸,一直延伸到埃及的尼罗河三角洲——那里繁衍生息着大量可驯化的动植物物种。这场革命迅速蔓延到整个欧亚大陆,因为它东西走向,便于动植物和技术的传播,没有遇到重大障碍。然而,撒哈拉以南非洲和美洲的可驯化物种较少,由于南北走向,这一转变发生得晚得多,导致不同地区之间的气候和土壤存在显著差异。撒哈拉沙漠和中美洲的热带雨林是阻碍这一传播过程的天然屏障。尽管存在这些挑战,这种转变——从狩猎采集部落到农业社会,从游牧生活方式到定居生活——在几千年的新石器革命期间传播到了人类的大部分地区。这一时期,人类在世界各地驯养了大量的野生动植物。为了像牛顿对物理学或达尔文对生物学那样彻底改变经济学领域,奥德·加洛尔的杰作《人类之旅》大胆尝试撰写人类的经济史。这本简明而全面的书跨越数千年,涵盖了全球历史,让人想起贾里德·戴蒙德的《枪炮、病菌与钢铁》和尤瓦尔·诺亚·哈拉里的《人类简史》。作者探讨了一些国家增长而其他国家停滞不前的原因,为人类从起源到现代世界的漫长历程提供了引人入胜的描述。这本书的范围和抱负无与伦比,提供了精妙、雄辩且博学的探索,探讨了当今国家之间惊人的贫富差距的原因。奥德·加洛尔的《人类之旅》全面介绍了全球经济史,为现代世界提供了独特的视角。本书深入探讨了影响人类进步的各种因素,包括教育、家庭规模和性别平等。这位学者是布朗大学著名的经济学教授,他开创了统一增长理论,探索人类历史上进步、繁荣和不平等的根本驱动因素。凭借一生积累的丰富知识,他与世界各地的知名观众分享了他的发现。他的最新作品《人类之旅》现已在全球以 28 种语言出版。本书深入探讨了影响人类进步的各种因素,包括教育、家庭规模和性别平等。这位学者是布朗大学著名的经济学教授,他开创了统一增长理论,探索人类历史上进步、繁荣和不平等的根本驱动因素。凭借一生积累的丰富知识,他与世界各地的知名观众分享了他的发现。他的最新作品《人类之旅》现已在全球以 28 种语言出版。本书深入探讨了影响人类进步的各种因素,包括教育、家庭规模和性别平等。这位学者是布朗大学著名的经济学教授,他开创了统一增长理论,探索历史上人类进步、繁荣和不平等的根本驱动因素。凭借一生积累的丰富知识,他与世界各地的知名观众分享了他的发现。他的最新作品《人类之旅》现已在全球以 28 种语言出版。