摘要:活生物体可以通过响应外部和内部刺激来产生相应的功能,而这种易怒性在自然界中起着关键作用。受到这种自然时间响应的启发,具有处理时间相关信息的纳米版本的开发和设计可以促进分子信息处理系统的开发。在这里,我们提出了一台可以动态响应顺序刺激信号的DNA有限状态机。为了构建这款状态机,开发了一种可编程的变构策略。该策略使用可构造的DNA发夹对DNAZYME构象进行可编程控制。基于此策略,我们首先实施了具有两个状态的有限状态机器。通过策略的模块化设计,我们进一步实现了具有五个状态的有限状态机器。DNA有限状态机赋予分子信息系统具有可逆逻辑控制和秩序检测的能力,可以将其扩展到更复杂的DNA计算和纳米机械,以促进动态纳米技术的发展。
经典的钙粘蛋白是跨膜蛋白,其细胞外域连接相邻细胞,其细胞内结构域通过B-蛋白酶和A -Catenin连接到肌动蛋白细胞骨架。cadherin- catenin络合物传递了驱动组织形态发生和伤口愈合的力。此外,E-catenin构象的张力依赖性变化使其能够募集肌动蛋白结合蛋白葡萄蛋白到细胞 - 细胞连接蛋白,从而有助于连接性增强。多种钙粘蛋白复合物的方式以及是否合作以加强对负载的细胞 - 细胞连接的构成。在这里,我们使用了单分子光学陷阱测量值来检查多种钙粘蛋白 - catenin络合物如何在负载下与F-肌动蛋白相互作用,以及这种相互作用如何受到杂质蛋白的影响。我们表明,朝向肌动灯的()末端的力导致平均寿命长3倍,比将力施加到刺(+)末端时。我们还通过包含钙粘蛋白 - 钙蛋白复合物和葡萄蛋白头部区域的第四纪复合物测量了依赖性的肌动蛋白结合,它们本身无法结合肌动蛋白。该四元复合物的结合寿命随着额外的配合物结合的F-肌动蛋白而增加,但仅当载荷朝向()末端定向时。相比之下,单独的钙粘蛋白 - 钙蛋白复合物并未显示这种合作的形式。2023 Elsevier Ltd.保留所有权利。这些发现揭示了多级,力依赖性调节,从而增强了多个钙粘蛋白/catenin络合物与F-肌动蛋白的缔合的强度,从而提供了阳性反馈,从而可以增强结并促进F-肌动蛋白,从而促进高阶细胞骨架组织的出现。
多结构域蛋白内的变构信号传导是空间上相距较远的功能位点之间通信的驱动因素。了解大型多结构域蛋白中变构耦合的机制是实现系统空间和时间控制的最有希望的途径。最近,CRISPR-Cas9 在分子生物学和医学领域的应用激增,这促使人们需要了解 Cas9 的原子级蛋白质动力学(这是其变构串扰的驱动力)如何影响其生物物理特性。在本研究中,我们使用核磁共振 (NMR) 和计算的协同方法来精确定位热稳定性 Geo Cas9 的 HNH 结构域中的变构热点。我们表明,K597 突变为丙氨酸会破坏盐桥网络,进而改变 Geo HNH 结构域的结构、变构运动的时间尺度和热稳定性。在广泛研究的中温 S. pyogenes Cas9 中,这种同源赖氨酸到丙氨酸的突变同样改变了 Sp HNH 域的动力学。我们之前已经证明,通过突变改变变构是 Sp Cas9 (e Sp Cas9) 特异性增强的来源。因此,这在 Geo Cas9 中可能也是如此。由 AIP Publishing 独家授权发布。https://doi.org/10.1063/5.0128815
基于活动的 CRISPR 扫描揭示 DNA 甲基化维持机制中的变构 Kevin C. Ngan 1,2、Samuel M. Hoenig 1、Pallavi M. Gosavi 1,2、David A. Tanner 1、Nicholas Z. Lue 1,2、Emma M. Garcia 1,2、Ceejay Lee 1,2 和 Brian B. Liau 1,2 * 隶属关系:1 美国马萨诸塞州剑桥市化学与化学生物学系 2 美国马萨诸塞州剑桥市哈佛大学和麻省理工学院 Broad 研究所 02142 *通讯地址:liau@chemistry.harvard.edu 摘要 变构能够动态控制蛋白质功能。一个典型的例子是严格协调的 DNA 甲基化维持过程。尽管变构位点具有重要意义,但系统地识别变构位点仍然极具挑战性。在这里,我们使用基于活性的抑制剂地西他滨对必需的维持甲基化机制——DNMT1 及其伴侣 UHRF1——进行 CRISPR 扫描,以揭示调节 DNMT1 的变构机制。通过计算分析,我们确定了远离活性位点的 DNMT1 中假定的突变热点,这些热点包括跨越多域自抑制界面和未表征的 BAH2 域的突变。我们从生化角度将这些突变表征为增加 DNMT1 活性的功能获得突变。将我们的分析推断到 UHRF1,我们在多个域中辨别出假定的功能获得突变,包括跨自抑制 TTD-PBR 界面的关键残基。总的来说,我们的研究结果强调了基于活性的 CRISPR 扫描在提名候选变构位点方面的实用性,甚至超越了直接药物靶点。简介变构是一种基本特性,它使蛋白质能够将一个位点的刺激作用转化为调节另一个远端位点的功能。尽管进行了深入研究,但在不同的蛋白质靶标中识别变构位点仍然具有挑战性,并且高度依赖于上下文。与正构位点不同,变构位点在相关蛋白质之间的保守性通常较低,并且控制其结构特征和特性的原理尚不清楚。1,2 由于这些挑战,用于识别和表征变构位点的实验和计算方法较少。3 尽管如此,人们仍在努力开发小分子变构调节剂,因为与正构配体相比,变构位点的结构多样性具有更高的选择性、更低的毒性和蛋白质功能的微调潜力。1,2 因此,开发能够识别变构机制的新工具将进一步加深我们对蛋白质调控的理解并促进药物发现。同时利用药理学和遗传学扰动已广泛成功地用于靶标反卷积和阐明药物作用机制。4 特别是,识别出导致药物耐药性的突变可为靶向作用提供关键验证,并且通常可以阐明潜在的生物学原理。5 尽管许多耐药性突变发生在药物结合位点附近,但它们也可能出现在靶蛋白的远端位置。即使药物在正构位点内结合,这些远端突变也可以通过扰乱变构机制起作用。6–8 例如,对 ABL1 抑制剂(包括正构和变构抑制剂)的耐药性突变始终出现在药物结合位点之外,并通过破坏非活性构象或以其他方式中和 ABL1 自身抑制来驱动耐药性。8–12 此类
这里我们报告了我们的主要抑制剂系列中的一种,一种通过应用我们的 Smart AllosteryTM 平台识别的具有皮摩尔结合亲和力的低纳摩尔强效抑制剂。该抑制剂与 CBL-B 的非活性形式结合,其在识别的热点中的结合模式由共晶体结构证实。它抑制激酶对 CBL-B 的磷酸化,抑制 CBL-B 的 E3 连接酶活性,促进细胞因子释放并增强 T 细胞增殖以及 NK 细胞活化和杀伤。在体内,我们的 CBL-B 抑制剂有效增强了抗 CD3 治疗小鼠的 T 细胞反应。我们在此通过预测和用药重要免疫肿瘤学靶点上的调控热点,证明了我们专有的 Smart Allostery™ 平台的验证,而该靶点迄今为止很难用药。
机器人系统辅助基因组编辑技术和计算机辅助设计工具的进步极大地促进了微生物细胞工厂的发展。尽管目前已有多种独立的软件解决方案可用于载体DNA组装、基因组编辑和验证,但迄今为止仍然缺乏可以为整个基因组改造过程提供一站式服务的完整工具。这使得大量基因改造的设计,特别是构建那些需要严格精确的基因操作的突变,成为一个费力、耗时且容易出错的过程。在此,我们开发了一个称为GEDpm-cg的免费在线工具,用于设计谷氨酸棒杆菌的基因组点突变。选用自杀质粒介导的反选择点突变编辑方法和基于重叠的DNA组装方法来确保谷氨酸棒杆菌染色体上任何位置上的任何单核苷酸的可编辑性。设计结果提供了用于遗传修饰载体 DNA 组装和测序验证所需的引物,以满足所有实验需求。超过 10,000 个单点突变的计算机设计任务可以在 5 分钟内完成。最后,在 GEDpm-cg 的指导下,在谷氨酸棒杆菌中成功构建了三个独立的点突变,这证实了计算机设计结果可以准确无缝地与体内或体外实验衔接。我们相信该平台将提供一个用户友好、功能强大且灵活的工具,用于通过机器人/软件辅助系统对工业主力谷氨酸棒杆菌进行大规模突变分析。
变构是蛋白质的基本特性,它调节空间上相距遥远的位点之间的生化信息传递。在这里,我们报告了分子动力学 (MD) 模拟在发现 CRISPR-Cas9 中的变构通讯机制方面的关键作用,CRISPR-Cas9 是一种领先的基因组编辑机制,在医学和生物技术方面具有巨大的前景。MD 揭示了变构如何在 CRISPR-Cas9 功能的至少三个步骤中发挥作用:影响 DNA 识别、介导切割和干扰脱靶活性。发现激活协同 DNA 切割的变构通讯通过连接 HNH 和 RuvC 催化域的 L1/L2 环进行。这些“变构传感器”的识别启发了具有改进特异性的 Cas9 蛋白新变体的开发,为控制 CRISPR-Cas9 活性开辟了一条新途径。讨论的研究还强调了识别叶在催化 HNH 域的构象激活中的关键作用。具体而言,REC3 区域被发现通过感知 RNA:DNA 杂合体的形成来调节 HNH 的动态。REC3 的作用在 DNA 错配的情况下尤其重要。事实上,REC3 对在特定位置含有错配对的 RNA:DNA 杂合体的干扰导致 HNH 锁定在非活性“构象检查点”构象中,从而阻碍脱靶切割。总体而言,MD 模拟建立了 CRISPR-Cas9 变构现象的基本机制,有助于开发新的 CRISPR-Cas9 变体以改进基因组编辑的工程策略。
摘要:β-内酰胺酶抑制蛋白(BLIP)能有效灭活A类β-内酰胺酶,但效力程度差异很大。了解BLIP在A类β-内酰胺酶抑制中的不同作用可以为抑制剂设计提供参考。然而,基于X射线晶体学获得的静态结构,这个问题很难得到解决。在本研究中,离子迁移质谱、氢氘交换质谱和分子动力学模拟揭示了三种A类β-内酰胺酶的构象动力学,BLIP对它们的抑制效率不同。与TEM1和SHV1相比,PC1的构象更长。几个重要的环区域的局部动力学不同,即突出环、H10环、Ω环和SDN环。与BLIP结合后,这些环协同重排以增强结合界面并使催化位点失活。具体来说,在 SHV1 和 PC1 的突出环中发现构象动力学的不利变化,从而导致结合效果降低。有趣的是,BLIP 上的单个突变可以补偿该区域的不利变化,从而表现出对 SHV1 和 PC1 的增强的抑制作用。此外,还揭示了 H10 区域是一个重要的变构位点,可以调节 A 类 β-内酰胺酶的抑制作用。这表明刚性的突出环和灵活的 H10 区域可能是有效抑制 TEM1 的决定因素。我们的研究结果为 β-内酰胺酶的构象动力学及其与 BLIP 的结合提供了独特而明确的见解。这项工作可以扩展到其他感兴趣的 β-内酰胺酶并启发新型抑制剂的设计。