•AEC-Q100有资格用于汽车应用 - 温度1级:–40°C≤Ta≤125°C - HBM ESD分类级别2 - CDM ESD分类级 - CDM ESD分类级别C4B•40-V负载降低量降低了容忍度,可容忍以支撑后3-V运行型•3-V运行型•3-V运行模式 - 3550 - 3550 - 350收费时输入泄漏电流•支撑1至4细胞超级电容器从0 V•外部电阻可编程操作 - 可编程操作 - FB PIN调整超级电容器调节电压 - ISET将电荷设置为10 mA,从10 mA设置为800 mA•高准确性 - ±1%电荷电压准确性 - 电荷准确率 - ±10%的电费均准确率 - ±10%的启用功能 - 导致功能 - 导致功能 - 导致功能 - 导致功能 - 导致功能 - 导致功能 - 导致功能 - 导致功能 - 导致功能 - 导致功能 - 导致功能 - 导出功能 - 功率良好指示的输出•综合故障保护 - 过电压保护中的18-V - 1000 ma过电流保护 - 125°C热调节; 150°C热关闭保护 - ISET PIN简短保护
摘要:针对线弧增材制造 (WAAM),我们提出并实施了一种创新轨迹策略,该策略适用于不同的、更复杂的几何形状,而非单一解决方案。这种名为 Pixel 的策略可定义为一个复杂的多任务程序,用于执行优化的路径规划,其操作通过计算算法(启发式算法)进行,具有可访问的计算资源和可容忍的计算时间。模型层被分成方形网格,一组点系统地生成并分布在切片轮廓内,类似于屏幕上的像素,轨迹在此规划。Pixel 策略基于从旅行商问题 (TSP) 技术创建轨迹。与现有算法不同,Pixel 策略使用经过调整的贪婪随机自适应搜索程序 (GRASP) 元启发式算法,并由作者开发的四个并发轨迹规划启发式算法辅助。交互从随机初始解决方案(全局搜索)和后续迭代改进(局部搜索)提供连续轨迹。在所有循环之后,定义一条轨迹并用机器代码编写。实施计算评估以证明每种启发式方法对最终轨迹的影响。最终使用两种不同的不易打印的形状进行了实验评估,以证明所提策略的实际可行性。
1. 简介 未来几年,航空航天和国防 (A&D) 行业将特别受到气候变化、能源价格、经济和技术等因素的影响,进一步推动客户对减少产品开发时间和成本的需求,而网络中心互操作性等新业务需求则导致相互依赖的系统之系统 (SoS) [Jamshidi 2009]。SoS 通过组合多个交互系统来提供所需的功能,但代价是增加复杂性和不确定性,这直接反映在相应的开发过程中 [Browning 1998]。为了在可容忍的时间范围内设计出像军用飞机这样的复杂 SoS,不同学科特定的开发过程已经并行化,每个流程都相当独立地管理。但这种并行工程 (CE) 范式与跨学科飞机设计的迭代性质相冲突,需要有效的跨域信息交换。因此,这些特点对同步的多域协作提出了重要挑战,而传统的领域分离的工程流程和异构工具环境无法充分提供这种挑战 [Broy et al. 2010] 因此,未来的集成开发流程必须重点关注。日常业务经验表明,特别是在系统工程和机械/电气工程领域特定交付物的集成过程中,这两个流程
I. 引言 数字射频发射器因其相对于模拟发射器的众多优势而广受欢迎 [1]、[2]、[3]、[4]、[5]、[6]、[7]、[8]、[9]。数字发射器 (TX) 省去了大部分模拟功能,只包含一个模拟端口,即其输出。当然,这种方法依赖于高速、高线性度的数模转换器 (DAC)。DAC 的输出稳定时间必须与载波频率相称,其线性度由所需信号的可容忍失真和/或相邻信道功率比 (ACPR) 决定。后者在长期演进 (LTE) 标准等蜂窝应用中尤其具有挑战性。DAC 的非线性和无杂散动态范围 (SFDR) 已得到广泛研究 [10]、[11]、[12]、[13]、[14]、[15]。本文重点讨论 DAC 非线性和 ACPR 之间的关系。目的是提供简洁的方程,帮助设计人员决定如何选择 DAC 单元,以及在应用预失真等校正技术后可以容忍多少残余积分非线性 (INL)。第二部分涉及电流控制 DAC 的非线性分析,第三部分将其 INL 与 ACPR 联系起来。第四部分研究了当输入近似为白噪声时这些 DAC 的行为,第五部分研究了相位失真的影响。第六部分重复了开关模式架构的计算。
过去二十年来,人们对量子信息理论的兴趣越来越浓厚,这是量子计算的基础,并向理论物理的各个分支进行了广泛的应用。尤其是,量子误差校正(QEC)是实现可容忍量子计算机与量子噪声(例如变形[1-5])的实验实现的关键。QEC代码是通过将量子状态(代码子空间)嵌入更大的希尔伯特空间来保护量子状态(代码子空间)免受错误的理论框架。在冷凝物理物理学中,构建了一大类QEC代码,以描述物质代码[6-8]和Fracton模型[9-12]等物质的拓扑阶段。另一方面,已经在高能理论中研究了全息代码[13-16],以了解一个较低维度的量子重力与量子场理论之间的全息二元性[17-19]。QEC代码已被利用来构建一组离散的二维形成共形场理论(CFTS),称为Narain Code CFT [20]。这概括了经典代码的手性CFT的结构[21],该代码长期很长时间[24,25]。narain代码CFT是骨CFT的,其光谱的特征是洛伦兹晶格与量子稳定器代码相关。Narain Code CFTS在模块化引导程序[26-28],搜索具有较大频谱差距的CFT [29,30]和全息
摘要 采用自体、体外扩增的肿瘤浸润淋巴细胞 (TIL) 进行过继细胞疗法正在研究用于治疗实体肿瘤,并在临床试验中显示出强劲的反应。基于令人鼓舞的疗效、可容忍的安全性和中央制造工艺的进步,lifileucel 现在是第一个获得美国食品药品监督管理局 (FDA) 批准的 TIL 细胞治疗产品。为此,需要治疗管理和交付实践指导,以确保将这种方式成功整合到临床护理中。本综述包括由 TIL 工作组制定的有关 TIL 细胞治疗方案的临床和毒性管理指南,该工作组由国际公认的血液学家和肿瘤学家组成,具有 TIL 细胞治疗方面的专业知识,并涉及患者护理和操作方面。在潜在标准护理 TIL 使用的背景下,讨论了专家对患者管理的共识建议,包括患者资格、筛查测试以及 TIL 细胞疗法的临床和毒性管理,包括肿瘤组织获取手术、非清髓性淋巴细胞清除、TIL 输注和 IL-2 给药。这些建议为在 TIL 细胞治疗方案给药期间的最佳临床管理以及对后续毒性管理的识别提供了实用指南。这些指南侧重于参与这些患者护理的多学科医生、护士和利益相关者团队。
我们很高兴在此推出孟加拉国电力发展局综合管理系统手册。本综合管理系统手册 (IMS 手册) 介绍了孟加拉国电力发展局各项活动和服务必须采取的措施和控制措施,以符合 ISO 9001:2015、ISO 14001:2015 和 ISO 45001:2018 标准的要求。本手册将确保优化电力生产和计划维护,将电压和频率波动最小化在可容忍范围内,改善客户服务,减少或消除任何伤害和疾病,防止环境污染,确保遵守适用法律和其他要求,并持续提高孟加拉国电力发展局的绩效。本手册的编纂是 BPDB 为提高质量、健康安全和环境绩效所做的努力的延续。它是根据 BPDB 现有的质量和 OHSAS 手册设计的。我在此指示孟加拉国电力发展局的所有员工在执行相关任务时遵循本 IMS 手册中规定的措施,并积极合作,为实现既定目标做出贡献。这一历程要求升级和采用质量、健康、安全和环境管理方面的新兴技术和实践。在此过程中,采用工具和方法来研究和分析问题以不断改进,并让跨职能团队参与解决日常活动,这将丰富整个组织,并使个人受益于提高专业绩效。让我们推进全面的 IMS 管理系统,致力于提高 IMS 绩效,以造福孟加拉国电力发展局的所有员工、供应商、承包商、访客、邻居和其他利益相关者。
摘要 —SodsMPC 是一个量子安全的智能合约系统。SodsMPC 许可服务器(验证节点)通过安全多方计算 (MPC) 协议执行合约。MPC 确保合约执行的正确性,同时轻松保护数据隐私。此外,SodsMPC 实现合约业务逻辑隐私,同时保护合约用户匿名身份。我们用有限状态机 (FSM) 表达合约的逻辑。FSM 的状态转换用具有秘密共享系数的盲多项式表示。当使用 MPC 计算这个盲多项式时,就获得了合约业务逻辑隐私。这些控制逻辑的系数是二进制秘密共享。我们还提出了一种通过 MPC 在二进制和整数秘密共享之间进行基本转换的方法。我们的合约匿名性来自“混合然后合约”范式。 SodsMPC 混合的在线阶段是预处理置换矩阵与秘密共享形式的输入向量之间的乘法,它实现了输入的完全随机化混洗,并保持秘密共享形式以供后续合约执行。所有 SodsMPC 组件(包括可验证秘密共享方案)都是量子安全的、异步的、可应对 t < n/ 3 个受损服务器,并且在预处理和在线阶段都具有鲁棒性(可容忍拜占庭服务器)。索引术语 — 多方计算、私人智能合约、有限状态机、匿名混合、量子安全
I. 引言 锁相环 (PLL) 抖动问题表现在各种系统中,特别是在通信和数据转换器中。近年来,有几种趋势导致了对低抖动的需求。首先,更高的数据速率使得链路中大多数阶段的时序预算收紧。其次,有线和无线媒体中可用的带宽有限,需要采用频谱高效的调制方案,这进一步限制了时钟和本地振荡器 (LO) 生成中可容忍的抖动。第三,随着模数转换器 (ADC) 以更高的速度和分辨率为目标,其采样时钟抖动必须相应下降。最先进的 PLL 设计已经在 5.5 GHz 至 16 GHz 频率下实现了 50 至 75 fs rms 范围内的抖动值 [1]–[6]。先前的研究 [7]–[10] 已经研究了 PLL 中的抖动现象。本文的目的是制定 PLL 抖动和功耗之间的权衡,并预测前者降低到 10 fs 以下时的设计问题。通过扩展 [11] 中的工作,我们得出了表明未来面临巨大挑战的趋势。第二节概述了当今理想的抖动值,第三节介绍了我们的分析框架。第四节讨论了振荡器相位噪声的影响,第五节还考虑了参考贡献。第六节涉及电荷泵 (CP) 噪声。第七节和第八节分别分析了抖动对 ADC 的影响以及可以减轻抖动功率权衡的因素。
智能家电和应用越来越受欢迎,因为它们为用户提供了高水平的服务。在智能家居中,所有电器和智能家电都相互连接,形成一个特殊的专用网络。由于经济和环境因素,能源消耗是用户和服务提供商都非常关心的问题。电网技术进步与环保意识的结合导致了智能电网的兴起。通过妥善处理家庭用电请求,可以实现可靠且基础扎实的智能电网系统。因此,智能电网设计的一个关键方面是安排电器的启动时间和运行时间,以最大限度地减少能耗,并对任何给定时间的最大能耗进行限制。在本文中,我们提出了一个调度框架,用于在智能家居网络中满足来自电器的请求。假设网络将可用功率分配给来自电器的传入请求,并根据其初始要求以固定速率为每个电器提供服务。此外,假设每个请求在可容忍的服务启动和总中断延迟方面都有最大界限。该问题被形式化为采用自适应算法的离散调度问题。所提出的框架主要由一种动态程序形式的调度机制组成。本文提出了两种调度方案:非抢占式和抢占式。我们将所提出的算法的性能与文献中的其他方案进行了比较。模拟结果表明,能耗方面有所改善,表现为电费总节省。