由于目前尚无具有临床疗效的药物,因此寻找针对 COVID-19 的有效药物仍然迫在眉睫。近年来,寻找已获批准或正在研究的药物的新用途(即药物再利用)变得越来越流行。我们在此提出了一种基于知识图谱 (KG) 嵌入的 COVID-19 药物再利用新方法。我们的方法在以 COVID-19 为中心的 KG 中学习实体和关系的“集成嵌入”,以便获得图元素的更好的潜在表示。随后,集成 KG 嵌入用于训练深度神经网络以发现 COVID-19 的潜在药物。与相关研究相比,我们在排名靠前的预测中检索到了更多试验中药物,从而对试验外药物的预测更有信心。据我们所知,这是第一次使用分子对接来评估使用 KG 嵌入进行药物再利用获得的预测。我们表明福辛普利是 SARS-CoV-2 nsp13 靶标的潜在配体。我们还通过从 KG 中提取的规则以及 KG 衍生的解释路径来解释我们的预测。分子评估和解释路径为我们的结果带来了可靠性,并构成了评估基于 KG 的药物再利用的新的互补且可重复使用的方法。
基于概念的解释方法,例如Conept瓶颈模型(CBMS),旨在通过将这些概念准确地归因于Net-Net Work的特征空间的关键假设,旨在通过将其决策与人为理解的概念联系起来,以提高机器学习模型的可解释性。但是,这种基本假设尚未得到严格验证,主要是因为该领域缺乏标准化的群众和基准来评估此类概念的存在和空间对齐。为了解决这个问题,我们提出了三个指标:概念全球重要性指标,概念存在和概念位置指标,包括一种可视化概念激活的技术,即概念激活映射。我们基准了事后CBM,以说明其能力和挑战。通过定性和定量实验,我们证明,在许多情况下,即使是由事后CBMS确定的最重要的概念也不存在于输入图像中。此外,当它们存在时,其显着性图无法通过在整个对象上激活或误导相关概念特异性区域来与预期区域保持一致。我们分析了这些局限性的根本原因,例如概念的自然相关性。我们的发现不需要更仔细地应用基于概念的解释技术,尤其是在空间解释性至关重要的环境中。
摘要:本次演讲将全面概述安全攻击以及使用可解释人工智能的检测技术。首先,我将概述各种软件和硬件安全威胁和漏洞。接下来,我将介绍可解释的人工智能算法,以人类可理解的方式解释机器学习行为。我将讨论使用可解释人工智能的最先进的攻击检测方法。我还将介绍如何启用可解释人工智能模型的硬件加速以实现实时漏洞检测。最后,我将讨论机器学习模型的安全威胁,以及设计稳健人工智能模型的有效对策。
摘要。经济变量融合了公司绩效的相互联系的性质使得对公司赚取趋势的预测成为挑战性的任务。现有方法通常依赖于简单的模型和未能捕获相互作用影响的综合性的财务比率。在本文中,我们将机器学习技术应用于来自AIDA的原始财务报表数据,AIDA是一个数据库,该数据库包括2013年至2022年的意大利上市公司的数据。我们介绍了对不同模型的比较研究,并遵循欧洲AI法规,我们通过将解释性技术应用于所提出的模型来补充分析。,我们建议采用一种基于游戏理论的可解释的人工智能方法来识别最敏感的特征,并使结果更容易解释。
马铃薯叶疾病的准确分类在确保作物的健康和生产力方面起着关键作用。本研究通过利用可解释的AI(XAI)和在深度学习框架内转移学习的力量来解决这一挑战的统一方法。在这项研究中,我们提出了一种基于转移学习的深度学习模型,该模型是针对马铃薯叶疾病分类而定制的。转移学习使该模型能够受益于经过训练的神经网络架构和权重,从而增强了其从有限标记的数据中学习有意义表示的能力。此外,将可解释的AI技术集成到模型中,以提供对其决策过程的可解释见解,从而有助于其透明度和可用性。我们使用公开可用的马铃薯叶病数据集训练该模型。获得的验证精度为97%,测试精度为98%。本研究应用梯度加权类激活映射(Grad-CAM)来增强模型的解释性。这种可解释性对于提高预测绩效,促进信任和确保无缝融合到农业实践至关重要。
代表质子和其他黑龙的Parton分布函数(PDF)通过柔性,高保真的参数化已成为粒子物理现象学的长期目标。尤其如此,因为所选的参数化方法可以在QCD全局分析中提取的最终PDF不确定性中起影响力。反过来,这些通常是LHC和其他设施到非标准物理的实验范围的确定性,包括在大X上,参数化效应可能很重要。在这项研究中,我们探索了一系列具有各种神经网络拓扑的编码器 - 模型学习(ML)模型,作为从可解释的潜在空间中存储的有意义的信息中重建PDF的有效手段。鉴于最近努力在QCD分析和晶格规范计算之间进行协同效应,我们根据PDF在Mellin空间中的行为(即它们的综合力矩)制定了潜在表示,并测试了各种模型从该信息中解释PDF的能力。我们引入了一个数值软件包PDFDE-CODER,该软件包实现了几种编码器模型,以重建具有高忠诚度的PDF,并使用此端到端工具来探索基于神经网络的模型可能如何将PDF Para-para-para-para-质量连接到诸如其Melllin Moments之类的属性属性。我们还剖析了编码的Mellin矩和重建的PDF之间学习相关性的模式,这些模式提出了进一步改进基于ML的PDF参数化方法和不确定性量化的机会。
13 Krizhevsky A,Sutskever I,Hinton GE。具有深卷积280神经网络的Imagenet分类。在:第281届神经281信息处理系统国际会议论文集 - 第1卷。Curran Associates Inc。:Red Hook,NY,282 USA,2012年,第1097–1105页。283
序列到功能分析是人类遗传学中的一项具有挑战性的任务,特别是在从生物序列(例如个体化基因表达)预测细胞类型特异性多组学表型时。在这里,我们提出了一种新方法 UNICORN,其预测性能比现有方法有所提高。UNICORN 将来自生物序列的嵌入以及来自预先训练的基础模型的外部知识作为输入,并使用精心设计的损失函数优化预测器。我们证明 UNICORN 在细胞水平和细胞类型水平的基因表达预测和多组学表型预测方面均优于现有方法,并且它还可以生成预测的不确定性分数。此外,UNICORN 能够将个性化的基因表达谱与相应的基因组信息联系起来。最后,我们表明 UNICORN 能够表征不同疾病状态或扰动的复杂生物系统。总体而言,基础模型的嵌入可以促进理解生物序列在预测任务中的作用,并且结合多组学信息可以提高预测性能。
