代表质子和其他黑龙的Parton分布函数(PDF)通过柔性,高保真的参数化已成为粒子物理现象学的长期目标。尤其如此,因为所选的参数化方法可以在QCD全局分析中提取的最终PDF不确定性中起影响力。反过来,这些通常是LHC和其他设施到非标准物理的实验范围的确定性,包括在大X上,参数化效应可能很重要。在这项研究中,我们探索了一系列具有各种神经网络拓扑的编码器 - 模型学习(ML)模型,作为从可解释的潜在空间中存储的有意义的信息中重建PDF的有效手段。鉴于最近努力在QCD分析和晶格规范计算之间进行协同效应,我们根据PDF在Mellin空间中的行为(即它们的综合力矩)制定了潜在表示,并测试了各种模型从该信息中解释PDF的能力。我们引入了一个数值软件包PDFDE-CODER,该软件包实现了几种编码器模型,以重建具有高忠诚度的PDF,并使用此端到端工具来探索基于神经网络的模型可能如何将PDF Para-para-para-para-质量连接到诸如其Melllin Moments之类的属性属性。我们还剖析了编码的Mellin矩和重建的PDF之间学习相关性的模式,这些模式提出了进一步改进基于ML的PDF参数化方法和不确定性量化的机会。
主要关键词