Loading...
机构名称:
¥ 1.0

随着机器学习技术和应用的爆炸性增长,具有转移功率的新范式和模型正在丰富该领域。近年来最引人注目的趋势之一是里曼尼亚几何学和谎言群体理论的显着意义的迅速崛起。根本原因是数据的复杂性上升,激发了更复杂的方法,从而导致广泛认识到大量数据集表现出内在的曲率。换句话说,许多数据集自然代表或忠实地嵌入了非欧几里得空间中。这种明显的例子是机器人技术中的旋转运动。n维空间中的旋转构成谎言组,并且没有矢量空间的结构。但是,非欧盟数据的显着性远远超出了这个特定示例。略有明显,但无处不在的是双曲几何形状中的数据表示。被广泛接受的是,任何具有某些(可能是隐藏的)层次结构的数据集自然地嵌入具有恒定负曲率的Riemannian歧管中[18,19,15]。数据激发系统方法的各种非欧亚人表示的最新进展,从而引起了新兴领域,名为“几何深度学习” [8]。

双曲线空间中的增强学习

双曲线空间中的增强学习PDF文件第1页

双曲线空间中的增强学习PDF文件第2页

双曲线空间中的增强学习PDF文件第3页

双曲线空间中的增强学习PDF文件第4页

双曲线空间中的增强学习PDF文件第5页