肾上腺脑白质营养不良 (ALD) 是由 X 连锁 ABCD1 基因的各种致病突变引起的,这种突变会导致许多器官中极长链脂肪酸的代谢异常积累。然而,ALD 尚未实现治愈性治疗。为了治疗 ALD,我们在 ALD 患者来源的成纤维细胞中应用了两种不同的基因编辑策略,即碱基编辑和同源性独立的靶向整合 (HITI)。接下来,我们使用通过静脉注射递送的 AAV9 载体在 ALD 模型小鼠中进行了体内 HITI 介导的基因编辑。我们发现 HITI 治疗的小鼠的 ABCD1 mRNA 水平显著升高,而 ALD 的敏感诊断标志物 C24:0-LysoPC(溶血磷脂酰胆碱)和 C26:0-LysoPC 的血浆水平显著降低。这些结果表明,HITI 介导的突变基因拯救可能是人类 ALD 治疗的一种有前途的治疗策略。
Prime编辑最近作为用于精确基因组编辑的下一代方法。在这里,我们利用DNA双链断裂(DSB)修复来开发两种新型策略,这些策略使用基于SP Cas9核酸酶的Prime Editor(PEN)安装精确的基因组插入。我们首先证明,与常规的Prime编辑指南RNA(PEGRNA)相连,可以有效地通过依赖同源性的DSB修复机制促进短基因组插入。虽然笔编辑导致副产品的水平增加,但它挽救了与基于Nickase的Prime编辑器表现不佳的Pegrnas。我们还提出了一种小分子方法,该方法产生了笔编辑的产物纯度。接下来,我们通过设计一个单个启动插入GRNA(springRNA)来开发同源性独立笔编辑策略,该插入式插入式插入(SpringRNA)通过非同源端连接途径(NHEJ)安装DSB的基因组插入。最后,我们表明,在DSB上进行的笔介导的插入阻止了Cas9诱导的大染色体缺失,并提供了证据表明连续CAS9介导的切割是Cas9诱导的大缺失的一种机制之一。总的来说,这项工作通过利用包括NHEJ在内的不同的DNA修复机制来扩展当前的Prime编辑工具箱,NHEJ代表了哺乳动物细胞中DSB修复的主要途径。
蛋白质。我们在此报告了通过同源定向修复在患者造血干细胞/祖细胞 (HSPC) 中进行基因校正,使用 CRISPR/Cas9 将腺相关病毒供体的 CYBB 外显子 1-13 或 2-13 cDNA 靶向插入内源性 CYBB 外显子 1 或外显子 2 位点。外显子 1-13 cDNA 的靶向插入不会恢复生理 gp91 phox 水平,这与 CYBB 表达对内含子 1 的要求一致。然而,外显子 2-13 cDNA 的插入完全恢复了吞噬细胞分化时 gp91 phox 和 ROS 的产生。添加土拨鼠肝炎病毒转录后调控元件不会进一步增强外显子 2-13 校正细胞中的 gp91 phox 表达,表明保留内含子 1 足以实现最佳 CYBB 表达。使用 i53 mRNA 暂时抑制非同源末端连接,靶向校正增加了约 1.5 倍。在 NSG 小鼠中植入后,校正后的 HSPC 产生了吞噬细胞,并恢复了 gp91 phox 和 ROS 的产生。我们的研究结果证明了
已证明,慢病毒载体基因治疗 X 连锁慢性肉芽肿病 (X-CGD) 是一种可行的方法,但随机载体整合和转导细胞中外源启动子的蛋白质产生低于正常水平,其长期安全性和有效性仍然令人担忧。之前一种基于基因组编辑的方法使用化脓性链球菌 Cas9 mRNA 和寡脱氧核苷酸供体来修复基因突变,显示出恢复生理性蛋白质表达的能力,但在静止的 CD34 1 造血细胞中缺乏足够的效率来进行临床转化。在这里,我们报告 p53 结合蛋白 1 (53BP1) 的瞬时抑制显著增加(2.3 倍)长期同源性定向修复,从而实现高效(与健康供体对照受试者相比为 80% gp91 phox 1 细胞)的 X-CGD CD34 1 细胞的长期校正。 (《血液》2021;137(19):2598-2608)
摘要:成簇的规律间隔短回文重复序列 (CRISPR)/Cas9 通过提供一种简单而强大的方法来切割特定的基因组序列,彻底改变了基因组编辑。然而,在目标位点引入模板化变化通常需要同源定向修复 (HDR),而这种修复仅在培养的一小部分细胞中起作用。为了富集 HDR 依赖性编辑细胞,我们采用了一种共同编辑策略,即在挽救内源性预制温度敏感 (ts) 突变的同时编辑目标基因 (GOI)。通过使用 ts 突变的修复作为可选择标记,由于编辑会恢复野生型 (wt) 序列,因此选择是“无疤痕的”。为了验证原理,我们使用了 HEK293 和 HeLa 细胞,这些细胞在必需的 TAF1 基因中发生了 ts 突变。 CRISPR 联合编辑 TAF1ts 和 GOI 可使高达 90% 的耐高温细胞携带 GOI 中的所需突变。我们使用该系统插入由质粒供体编码的大盒和由单链寡核苷酸供体 (ssODN) 编码的较小变化。值得注意的是,我们编辑的基因之一是在蛋白酶体亚基 PSMB6 中引入 T35A 突变,从而消除其 caspase 样活性。编辑后的细胞显示出这种活性的特定降低,证明了该系统在生成具有内源基因生物学相关突变的细胞系中的实用性。这种方法提供了一种快速、高效且无疤痕的方法来选择需要 HDR 的基因组编辑细胞。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
方法和结果:使用 DNA DSB 修复分析,我们评估了特定修复途径的效率,发现 PR、GR 和 GA 降低了非同源末端连接 (NHEJ)、单链退火 (SSA) 和微同源介导的末端连接 (MMEJ) 的效率,但不降低同源重组 (HR)。我们发现 PR 部分通过与核仁蛋白核磷蛋白 (NPM1) 结合来抑制 DNA DSB 修复。NPM1 的消耗会抑制 NHEJ 和 SSA,这表明 PR 表达细胞中 NPM1 的功能丧失会导致非同源和同源定向 DNA DSB 修复途径受阻。通过删除 NPM1 亚细胞定位信号,我们发现 PR 会结合 NPM1,无论 NPM1 指向哪个细胞区室。删除已知可与其他富含精氨酸的蛋白质结合的 NPM1 酸性环基序可消除 PR 和 NPM1 结合。使用共聚焦和超分辨率免疫荧光显微镜,我们发现 RAD52(SSA 修复机制的一个组成部分)的水平相对于使用 CRISPR/Cas9 基因组编辑删除了 C9ORF72 扩增的同源对照显著增加 iPSC 神经元。对死后脑组织的 Western 分析证实,与对照相比,C9ALS/FTD 样本中的 RAD52 免疫反应性显著增加。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2020 年 1 月 15 日发布。;https://doi.org/10.1101/2020.01.15.907766 doi:bioRxiv 预印本