适配器蛋白在各种细胞内信号通路中起重要作用。信号传递适配器蛋白-2(Stap-2)是一种衔接蛋白,具有Pleckstrin同源性(PH)和SRC同源性2(SH2)结构域,以及YXXQ信号转换器和转录3(STAT3)的激活剂 - 在其C-末端区域的结合基序。Stap-2也是乳腺肿瘤激酶(BRK)的底物。stap-2/brk表达在乳腺癌中被放松管制,并增强了STAT3依赖性细胞增殖。在前列腺癌细胞中,Stap-2在刺激后与表皮生长因子受体(EGFR)相互作用并稳定,导致EGFR信号的上调,这有助于癌细胞增殖和肿瘤进展。因此,抑制STAP-2与BRK/EGFR之间的相互作用可能是这些癌症的治疗策略。为此,干扰stap-2/brk/egfr结合的肽可能具有很大的潜力。的确,所鉴定的肽抑制剂成功抑制了Stap-2/EGFR蛋白相互作用,EGFR稳定和癌细胞生长。此外,肽抑制剂抑制了鼠异种移植模型中人前列腺和肺癌细胞系中肿瘤的形成。本综述着重于抑制性肽作为治疗前列腺和肺癌的有前途的候选者。
• 量子环境下的超奇异椭圆曲线 (SSEC):随着量子计算的发展,传统的 ECC 可能会因 Shor 算法等量子算法而变得脆弱。SSEC 提供了一种潜在的解决方案,可以更好地抵御量子攻击。这些曲线利用超奇异椭圆曲线之间的同源性,创建了当前量子算法无法有效解决的复杂结构,使 SECC 成为后量子密码学的理想候选者。
摘要 CRISPR-Cas 系统无疑彻底改变了基因组编辑领域,能够以引导 RNA 特异性的方式进行靶向基因破坏、调控和恢复。在本综述中,我们重点介绍目前可用的使用 CRISPR 核酸酶的基因恢复策略,特别是用于治疗遗传疾病的策略。通过 DNA 修复机制的作用,CRISPR 介导的基因组靶标处的 DNA 切割可以移动阅读框以纠正异常的移码,而两个位点的 DNA 切割可以诱导大量缺失或倒位,从而纠正 DNA 的结构异常。需要供体 DNA 的同源性介导或同源性独立的基因恢复策略已经得到开发并广泛应用于精确纠正目标基因中的突变序列。与上面列出的 DNA 切割介导的基因校正方法相比,碱基编辑工具可以在没有供体 DNA 的情况下实现碱基转换。此外,人们已经利用 CRISPR 相关转座酶来产生靶向敲入,并且已经开发出用于编辑细胞中数十个核苷酸的引物编辑器。在这里,我们介绍目前开发的基因恢复策略,并讨论每种策略的优缺点。
PARP酶的特征是在家族的基因和蛋白质中存在特征性PARP结构域(参考文献1)。“直接”家族在人类中体现了18个基因(PARP1-4,PARP5A,PARP5B,PARP6-17)(参考文献1,2)。然而,基于结构和功能同源性,PARP酶的“扩展”家族较宽(参考文献1)。Classical PARP enzymes catalyse the cleavage of NAD + to nicotinamide and ADP-ribose units which are transferred to acceptor target proteins, thus inducing protein mono-ADP- ribosylation (MARylation) or poly-ADP-ribosylation (PARylation) that in turn modulate the biological properties of the acceptor proteins (Refs 1 , 3 ).玛丽化和paryation是古老的反应,并且存在于生命的所有领域(细菌,植物,真菌和动物)(参考4)。为了更好地理解ADP-核糖基化所涉及的机制,我们将读者推荐给著名的评论:(参考1,5,6,7,8,9)。PARP酶具有广泛的生理和病理生理任务(参考文献8)。大部分细胞核化归因于PARP1和PARP2(参考文献10,11),并且PARP1和PARP2之间存在很强的结构和功能同源性(参考文献12、13)。最近的研究已经阐明了PARP1和PARP2的单独功能(例如(参考14)),在此我们将描述PARP2和DETIPHER的生物学作用,哪些是PARP2特异性的,哪些是与其他PARP酶共享的。
图2 PCAS-GUIDE-AAVS1和PAAVS1-RFP-DNR的矢量图。pCAS指向AAVS1是哺乳动物细胞中SGRNA和Cas9共表达的多合一载体。SGRNA的表达是由强大的组成型Pol III启动子U6启动子驱动的。而CMV启动子则驱动CAS9酶的表达。paAVS1-RFP-DNR在CMV启动子下的PGK启动子和RFP基因下表达紫霉素的抗性标记。5'和3'AAVS1同源臂(“ aavs-right”和“ aavs-left”)为单元提供了一个用于同源性修复的模板。
结是嵌入s 1,→s 3的环境同位素类型(请参见图2和定义2.1),自从远古时代以来,人类使用了自鞋款发明以来的最新时代。结的数学研究始于开尔文勋爵,假设原子实际上是结,分子是在以太中流动的链接。他的合作者彼得·泰特(Peter Tait)随后发起了结理论领域。基本问题是:给定两个结,它们是否相同?在20世纪初期的拓扑发展发展之后,开发了许多结的结[39],以便对这个问题提供答案。当发现与3个和4个manifolds的研究深入联系时,对结理论的兴趣就会上升。例如,使用结来证明有异国情调的r 4,即同构但不构型的歧管对r 4 [15]。Jones和Witten通过发现琼斯多项式[20]及其与量子拓扑的量子场理论[41]的关系彻底改变了领域。这些突破之后,发现了Khovanov同源性[22]和结式同源性[35],这些[35]极大地概括了琼斯和亚历山大多项式,并提供了积极的研究领域。在本文中,我们主要对结理论的两个方面感兴趣。第一个是一个称为连接总和的操作(请参见图5),该总和需要两个方向的结,将其切开并胶合
RNA是生物体中的关键调节剂,故障可能导致严重的疾病。探索基于RNA的治疗剂和应用,计算结构预测和设计方法起着至关重要的作用。在这些方法中,深度学习(DL)算法表现出巨大的希望。但是,由于各种挑战,RNA社区中DL方法的采用受到限制。dl从业者经常低估了数据同源性,在该领域引起怀疑。此外,缺乏标准化的基准测试器会导致比较,同时应对低级任务需要大量的努力。评估性能和可视化结果被证明是非平凡和任务依赖性的。为了解决这些障碍,我们引入了RNABENCH(RNB),这是一个专门用于开发深度学习算法的开源RNA库,可减轻在数据生成,评估和可视化过程中的挑战。它提供了精心策划的同源性感知的RNA数据集和标准化的RNA基准,包括开创性的RNA设计基准套件,其中包含一个新颖的现实世界RNA设计问题。此外,RNB还提供基线算法,包括现有的和新颖的性能指标以及数据实用程序和全面的可视化模块,所有这些都可以通过用户友好的界面访问。通过利用RNB,DL从业人员可以快速开发创新的算法,从而有可能彻底改变计算RNA研究领域。
摘要 分支特异性(又称谱系特异性)基因非常常见,存在于所有分类学水平和所有被研究的分支中。它们可以通过复制先前存在的基因而产生,这可能涉及部分截断或与其他蛋白质结构域或调控序列的组合。它们也可以从非编码序列重新进化,从而产生潜在的真正新颖的蛋白质结构域。最后,由于分支特异性基因通常被定义为与其他蛋白质缺乏序列同源性,因此它们也可以通过足够快的序列进化而产生,以至于先前的序列同源性不再被检测到。在这种情况下,快速进化之后是限制,我们认为它们在本体论上是非新颖的,但在功能层面上可能是新颖的。一般来说,分支特异性基因较少受到生物学家的关注,但它们在重要性状中的作用的有趣例子越来越多。在这里,我们回顾了一些最近选定的例子,并认为对分支特异性基因的关注是对进化发育动物领域习惯的保守发育调控工具包的关注的重要纠正。最后,我们讨论了有关分支特异性基因进化的问题,以及未来研究如何解决这些问题。我们强调了这样的假设:与其他基因相比,分支特异性基因更有可能参与它们出现的主干群中出现的共衍生征。
通过表面钙化的paTern识别受体对病原体相关的分子模式(PAMP)的感知激活呼吸道爆发氧化酶同源性D(RBOHD),通过氯曲霉诱导的激酶1(BIK1)直接磷酸化激活呼吸爆发氧化酶同源性D(RBOHD),并诱导反应氧氧的产生(ROS)。rboHD活性必须严格控制以避免ROS的有害影响,但对RBOHD倾斜鲜明的效果知之甚少。要了解RBOHD的调节,我们使用了RBOHD的共免疫沉淀,并通过质谱分析和鉴定的吞噬氧化氧化酶/BEM1P(PB1)结构域的蛋白质(PB1CP)。pb1cp负调节RBOHD和对真菌病原体Colle-totrichum higginsianum的抵抗力。PB1CP与Bik1竞争,在体外与RBOHD结合。更重要的是,PAMP处理增强了PB1CP-RBOHD相互作用,从而导致磷酸化的Bik1与体内RBOHD的解离。pb1CP位于细胞外周的细胞和PAMP治疗中,诱导PB1CP和RBOHD重新定位到相同的小内膜室。此外,PB1CP在拟南芥中的过表达导致RBOHD蛋白的丰度降低,这表明PB1CP可能参与RBOHD内吞作用。我们发现了PB1CP是RBOHD的新型负调节剂,并揭示了其可能的调节机制,涉及从RBOHD中去除磷酸化的Bik1和RBOHD内吞作用的促进。
基因组编辑是一种利用工程核酸酶在特定基因组位置诱导双链断裂 (DSB) 的方法,以便利用细胞内源性 DNA 修复机制引入基因组修饰 [ 1 , 2 ]。DSB 形成后,细胞将利用两种修复机制中的一种——非同源末端连接 (NHEJ) 和同源性依赖性修复 (HDR),这两种机制均可用于诱导 DNA 变化 [ 3 , 4 ]。在 NHEJ 过程中,细胞将 DNA 的断裂末端重新连接在一起——这个过程很快但往往不准确,修复后的链通常包含小的突变,表现为小的缺失和插入 [ 5 , 6 ]。在基因组编辑中,NHEJ 用于通过功能丧失突变来灭活基因功能。HDR 是一个更复杂的过程,需要供体 DNA 与断裂的两侧都具有同源性。在 HDR 中,细胞处理 DSB 的末端,留下 3′突出端,这些突出端侵入供体 DNA 的同源位点,将其用作 DNA 合成的模板,从而纠正断裂并使其与供体 DNA 相同 [7]。虽然在自然界中,供体 DNA 是姐妹染色单体,但在基因组编辑中,外源 DNA 被引入细胞,作为模板,将所需的变化引入基因组 [8](图 1)。多年来,已有多种类型的工程核酸酶被用于诱导基因组编辑所需的 DSB,包括