值得注意的是,本调查中引用的一些文献可能很难找到;但是,大多数文献可以通过 https://www.hd-computing.com/publications 上的在线出版物列表进行查找。Denis Kleyko 和 Dmitri Rachkovskij 对这项工作做出了同等贡献。DK 的工作得到了欧盟“地平线 2020”计划下玛丽居里个人奖学金 (839179) 的支持。DK 的工作还得到了 AFOSR FA9550-19-1-0241 和英特尔 THWAI 计划的部分支持。 DAR 的工作部分得到了乌克兰国家科学院(拨款编号 0120U000122、0121U000016、0122U002151 和 0117U002286)、乌克兰教育和科学部(拨款编号 0121U000228 和 0122U000818)以及瑞典战略研究基金会 (SSF,拨款编号 UKR22-0024) 的支持。作者地址:D. Kleyko,加州大学伯克利分校,美国加利福尼亚州伯克利市,邮编 94720,瑞典研究机构,瑞典希斯塔,邮编 16440;电子邮箱:denkle@berkeley.edu; D. Rachkovskij,国际信息技术研究与培训中心,乌克兰基辅,03680,吕勒奥理工大学,瑞典吕勒奥,97187;电子邮件:dar@infrm.kiev.ua;E. Osipov,吕勒奥理工大学,瑞典吕勒奥,97187;电子邮件:evgeny.osipov@ltu.se;A. Rahimi,IBM Research–Zurich,瑞士苏黎世,8803;电子邮件:abr@zurich.ibm.com。允许免费复制或复印本作品的全部或部分以供个人或课堂使用,但不得出于营利或商业目的而复制或分发,且复制件首页必须注明此声明和完整引文。必须尊重 ACM 以外的其他人拥有的本作品组成部分的版权。允许以署名形式发表摘要。以其他方式复制、重新发布、发布到服务器或重新分发到列表,需要事先获得特定许可和/或付费。请向 permissions@acm.org 申请许可。© 2023 计算机协会。
摘要 第二次量子革命促进了具有前所未有功能的新型传感器、通信技术和计算机的工程设计。量子技术的供应链正在兴起,其中一些专注于支持技术和/或量子技术研究基础设施的商业化组件,另一些则具有更高的技术就绪水平,接近市场。2018 年,欧盟委员会启动了大规模长期量子旗舰研究计划,以支持和促进具有竞争力的欧洲量子技术产业的创建和发展,以及巩固和扩大欧洲量子技术研究的领导地位和卓越性。量子旗舰在其战略研究议程中确定了实现加速发展和应用的措施之一:促进协调、专门的标准化和认证工作。标准化对于促进新技术的发展以及高效供应链的发展确实至关重要。技术、方法和接口的协调使可互操作的产品、创新和竞争成为可能,所有这些都将导致市场结构化,从而促进市场增长。随着量子技术的成熟,是时候开始考虑进一步的标准化需求了。本文从 CEN-CENELEC 量子技术焦点组 (FGQT) 的角度介绍了对量子技术标准化的见解,该焦点组成立于 2020 年 6 月,旨在协调和支持与欧洲工业和研究相关的标准的制定。
摘要 如果能及早发现脑肿瘤并进行有效治疗,人的生命就有可能得到保护。在 MRI 层中准确诊断恶性肿瘤是一项细致的工作,因此,所提出的方法能够准确地对肿瘤进行分类。磁共振成像 (MRI) 是分析脑肿瘤图片最常用的方法之一。有几种图像分类方法和算法。机器学习和分类算法的目的是从训练中自动学习,然后得出准确的结论。本研究考察了肿瘤分类算法对 MR 脑图像属性进行分类的有效性。在分类过程中,对传入图像的统计特征进行评估,并将数据仔细分成多个类别。使用 SVM(支持向量机)和逻辑回归机器学习算法测试这些数据。SVM(支持向量机)技术的准确率为 96%,证明其优于其他算法。
其中,如果位串 s 中的 1 的个数为偶数/奇数,则该位串为奇偶校验。我们可以将 | Ψ QRC ⟩ 视为奇偶校验状态:字符串的奇偶性决定系数是 α 还是 β 。这种奇偶校验性质使其很容易根据 Z 测量值进行校正。例如,如果在最后一个量子比特上测量 Z,如果结果为 0,则我们只需保留其他 N − 1 个量子比特中的信息;如果结果为 1,则信息仍存储,但我们需要在最后应用 X 门来恢复原始量子比特。该模型的一个关键缺点是它无法根据哪怕一个 X 测量值进行校正,这会导致整个波函数崩溃。当然,已知更复杂的代码 [ 25 ] 可以同时防止 Z 和 X 错误;其中概念上最简单的是 Shor 9 量子比特代码 [ 26 ]。更实际的可能性包括表面码 [27-31],它更适合物理实现(并且容错性更强);表面码中至少需要 9 个数据量子位来保护一个逻辑量子位 [31]。在本文中,我们提出了量子重复码的另一种简单替代方案,它解决了重复码的两个缺点,同时保持了其大部分概念简单性。我们的代码由一维、空间局部、时间相关的横向场伊辛模型 (TFIM) 生成。虽然该模型因与基于马约拉纳量子计算的联系而在量子信息论中有着悠久的历史 [32-36],但在这里我们将指出一种相当不同的方法,即使用 TFIM 对量子位进行鲁棒编码。与重复码一样,我们的代码受到使用奇偶校验态的启发,可以有效地纠正 Z 测量/误差。事实上,[37-39] 中已经强调了 (随机) 横向场 Ising 模型动力学与重复代码中的量子纠错之间的联系。与依赖于 GHZ 态准备的重复代码不同,我们的奇偶校验态可以在幺正动力学下在恒定时间内准备,并且它可以得到一种可以同时纠正 Z 和 X 错误的代码。我们的代码能够在有限时间幺正动力学之后实现这种纠错奇偶校验态,这可以通过与对称保护拓扑 (SPT) 相的联系来理解 [40-42],尽管这种代码看起来比许多受凝聚态物理启发的代码要简单。我们提出的 TFIM 代码是利用量子系统控制和操控方面取得的最新进展自然实现的。尤其是里德堡原子光镊阵列,由于能够单独控制原子,已被证明是一种高度可调谐的量子应用系统 [13, 43 – 48]。此外,虽然控制原子的初始空间配置已经是一种强大的工具,但现在还可以在保持量子比特相干性的同时移动原子 [49]。这种高度的控制,在空间和时间上,光镊阵列是近期实验中实现 TFIM 码的绝佳平台。本文的其余部分安排如下:我们将在第 2 部分介绍 TFIM 码。在第 3 部分中,我们描述了传统的基于综合征的量子纠错,并展示了 TFIM 码如何在存在 Z 误差的情况下恢复重复码的更传统现象(在我们的基础上),并且还可以通过纠正 X 误差超越它。我们在第 4 部分给出了数值证据,证明 TFIM 码可以直接用于生成更高深度的码。第 5 部分描述了在超冷原子实验中实现 TFIM 码的可行性。
(1) 一个有用的计算机内存概念模型;(2) 用于描述内存真实陈述的逻辑模型和规范语言;(3) 这些模型(概念模型和逻辑模型)的有效重叠;(4) 分离连词 ∗ ,使框架规则能够进行局部推理;(5) 可扩展的前置条件和后置条件。框架规则规定,如果我们有一个有效的三元组 { 𝑃 } 𝑐 { 𝑄 },那么我们可以用某个谓词 𝑅 扩展它的前置条件和后置条件,前提是 𝑅 没有任何与 𝑐 修改的变量共同的自由变量,从而得到 { 𝑃 ∗ 𝑅 } 𝑐 { 𝑄 ∗ 𝑅 } 。这样,我们可以对程序片段进行局部推理,同时忽略该片段周围的全局环境。Zhou 等人目前已开展了用于量子计算的分离逻辑方面的工作。 [ 2021 ] 和 Le 等人 [ 2022 ] 仅迎合了上述两个特征——逻辑模型和框架规则。具体而言,它们都没有提供量子软件工程师可以依赖的量子记忆模型,也没有提供可用的规范语言来编写关于量子态的真实陈述。缺乏概念性量子记忆模型,更重要的是,缺乏有用的断言语言,阻碍了前置条件和后置条件的可扩展性,使得这些逻辑难以在实践中使用。量子设置中分离合取的最直观解释是可分离性:当两个状态不纠缠时,可以在这些状态之间放置一个 ∗,这是现有工作所采用的。与经典设置不同,在分离逻辑发明之前的几十年里,指针混叠的可能性阻碍了霍尔逻辑在实际软件中的应用,而可分离量子态之间不存在混叠问题,因此不需要更通用的分离合取概念。然而,这些量子分离逻辑缺乏在本地陈述纠缠态任何有用信息的能力。在目前的量子
本文提出了一种机器学习方法,利用 14 个通道收集的脑电图数据来检测驾驶疲劳。为了获得更好的信号质量,使用独立成分分析去除信号中的噪声。使用 CSP 作为特征提取方法,使用 SVM 作为分类器。本文的其余部分组织如下:第 2 节介绍本研究的材料和方法。第 3 节介绍实验结果。第 4 节是研究的讨论和结论。这项工作的一些主要贡献如下:
摘要。大脑计算机接口(BCI)通过脑电图(EEG)信号实现大脑和外部机器之间的通信,这引起了很多关注。基于运动图像的BCI(MI-BCI)是BCI领域中最重要的范例之一。在Mi-BCI中,可以使用机器学习算法有效地识别运动意图的目标肢体。作为用于电机图像解码的典型机器学习算法,基于Riemannian的内核支持向量机(RK-SVM)算法无法从多频段中提取功能,从而限制了其性能。为了解决此问题,提出了将滤波器基于Riemannian的内核支持向量机(FBRK-SVM)方法,该方法结合了过滤器库结构和基于Riemannian的内核。在两个常用的公共数据集的比较实验中,发现所提出的算法可以产生更高的解码性能,这为运动成像的分类提供了新的选择。
摘要 — 量子软件工程 (QSE) 是一种新趋势,专注于统一量子力学原理和软件工程实践,以设计、开发、验证和发展量子时代的软件系统和应用程序。量子计算的软件架构(又名量子软件架构 (QSA))使用架构组件和连接器支持量子软件系统的设计、开发和维护等阶段。QSA 可以使量子软件设计人员和开发人员将 Qubits 的操作映射到架构组件和连接器以实现量子软件。本研究旨在通过调查 (i) 具有架构活动的架构过程,以及 (ii) 可以利用可用工具来自动化和定制以架构为中心的量子软件实现的人类角色来探索 QSA 的作用。本研究的结果可以促进知识转移,使研究人员和从业者能够应对以架构为中心的量子软件系统实现的挑战。索引词 — 量子软件工程、量子软件架构、架构流程、参考架构
计算机科学系弗吉尼亚理工大学,弗吉尼亚州,美国摘要——“除非我们的社会认识到网络欺凌的本质,否则成千上万的沉默受害者将继续遭受痛苦。”~安娜玛丽亚查韦斯。关于网络欺凌的研究已经有很多,但都无法提供可靠的解决方案。在这项研究工作中,我们开发了一个能够以 92% 的准确率检测和拦截欺凌传入和传出消息的模型,从而为这一问题提供了永久的解决方案。我们还开发了一个聊天机器人自动化消息系统来测试我们的模型,从而开发了人工智能驱动的反网络欺凌系统,使用多项式朴素贝叶斯 (MNB) 和优化的线性支持向量机 (SVM) 的机器学习算法。我们的模型能够检测和拦截欺凌的传入和传出欺凌消息并立即采取行动。
俗称,是设想中的城市空中交通 (UAM) 空中交通概念 [1] 的一部分。目前,大量无人机被用于各种应用,从军事(反恐行动、目标定位)到民用(运输、监视)、工业监测、救灾(损害评估)和农业服务。这个未来概念的一部分仍然需要深入研究,那就是大量无人机的着陆。自主无人机着陆可能是控制它最具挑战性的部分,因为控制器必须生成轨迹,不仅要降低功耗,还要承受困难、不稳定的空气动力学,至少要检测着陆点 [2]。能够为大量无人机到某个着陆区生成着陆序列的控制器需求量很大,这引起了我们的兴趣,并引起了我们在这个方向进行研究。已经做了大量工作 [1]、[2],但目前的设计仍然面临灵活性和可扩展性等挑战。文献中没有太多涉及大量无人机的灵活和可扩展着陆计划,尽管研究报告简要讨论了它以及其他设计挑战。[1] 中提出的模型由于复杂的数学计算需要较长的处理时间而存在可扩展性问题,因此在需要近实时使用的实际应用中受到限制。这部分计算可以用于机器学习进行训练、模拟、在工作环境中测试,最后在实际应用中实现。文献中已经报道了大量涉及无人机进行物体跟踪和其他应用的工作。鼓励读者参考 [2]-[4]。