蛋白质组是在特定时间由基因组,细胞,组织或生物体表达的完整蛋白质集。复杂性来自几个关键因素,包括:大量不同的蛋白质,给定蛋白质的潜在蛋白质成型数量以及生理相关蛋白质浓度的广泛动态范围。此外,蛋白质组处于恒定状态,并且可以随着时间的推移明显变化。在蛋白质组学中,这种变化用于将特定蛋白质与其功能和健康或疾病状态相关联。反过来,这些知识被利用用于诊断疾病和开发新药物靶标。
我们设计和制造陶瓷产品,如陶瓷复合材料和单片陶瓷材料。我们可以提供全方位的服务,包括数值射频模拟、材料设计和特性分析;制造大型、自由形状、实心陶瓷射频线圈架/线圈壳。立即联系我们,讨论高介电常数材料如何改善您的线圈。
摘要。数字签名是各种协议中提供完整性和真实性的基本构建块。量子计算的发展引发了人们对传统签名方案所提供的安全保障的担忧。CRYSTALS-Dilithium 是一种基于格密码学的高效后量子数字签名方案,已被美国国家标准与技术研究所选为标准化的主要算法。在这项工作中,我们提出了 Dilithium 的高吞吐量 GPU 实现。对于单个操作,我们采用一系列计算和内存优化来克服顺序约束、减少内存使用和 IO 延迟、解决银行冲突并缓解管道停顿。这为每个操作带来了高且平衡的计算吞吐量和内存吞吐量。在并发任务处理方面,我们利用任务级批处理来充分利用并行性并实现内存池机制以实现快速内存访问。我们提出了一种动态任务调度机制来提高多处理器占用率并显着缩短执行时间。此外,我们采用异步计算并启动多个流来隐藏数据传输延迟,并最大限度地发挥 CPU 和 GPU 的计算能力。在所有三个安全级别中,我们的 GPU 实现在商用和服务器级 GPU 上实现了超过 160 倍的签名加速和超过 80 倍的验证加速。这为每个任务实现了微秒级的摊销执行时间,提供了一种适用于实际系统中各种应用的高吞吐量和抗量子解决方案。
摘要细胞生理学的调节在很大程度上取决于功能不同的蛋白质和细胞成分的相互作用。这些相互作用可能是短暂的或长寿的,但通常会影响蛋白质运动。在细胞环境中测量蛋白质动力学,特别是在扰动蛋白质功能的同时,可以使蛋白质的功能与小分子扰动,可以使关键的相互作用解剖并促进药物发现;但是,目前的方法受到数据采集和分析的吞吐量受到限制。因此,使用超分辨率成像的研究典型地得出了从数十个细胞和一些实验条件的结论。我们通过开发高通量单分子跟踪(HTSMT)平台来解决这些局限性,用于以前所未有的规模(能够成像> 10 6个细胞/天筛选> 10 4化合物)的活细胞中蛋白质动力学的药物解剖。我们应用HTSMT来测量荧光标记的雌激素受体(ER)的细胞动力学,并筛选了一个多样的文库,以识别实时扰动ER功能的小分子。使用这种实验方式,我们确定了确定的命中的效力,途径选择性,目标参与和作用机理。动力学HTSMT实验能够区分ER信号传导的靶向和途径调节剂。综合途径分析概括了已知的ER相互作用伙伴的网络,并提出了潜在的新型,激酶介导的调节机械性。HTSMT的敏感性揭示了ER动力学与ER拮抗剂抑制癌细胞生长的能力之间存在新的相关性。因此,测量蛋白质运动是一种研究蛋白质之间动态相互作用的有力方法,并可能促进新型治疗剂的鉴定和表征。
AI/AS 1610 Gemini:简单的配置路径 硬件设置在 Gemini 配置中,无论操作模式如何,两个自动采样器都通过专用安装支架放置在前后进样器上,该支架可快速轻松地滑入安装,并在进样口和样品瓶上进行自对准。通过每个自动采样器和 GC 系统之间的单电缆连接进行电源、通信和握手,进一步简化了设置。无论是单塔配置还是 Gemini 配置,AI/AS 1610 自动采样器的设计都允许轻松访问进样口,从而方便维护操作。这是通过滑动支架实现的,可轻松将塔从进样器移开(图 3)。
摘要本文介绍了超高辐射模块化乘数的算法 - 硬件共同设计,用于高吞吐量模块化乘法。首先,为了加快模块化乘法的速度,我们使用一种新型的分段还原方法来利用超高的radix插入模块化乘法算法,从而减少了迭代和预计的数量。然后,为了进一步改善模块化乘法的吞吐量,我们设计了高度并行的模块化乘数体系结构。最后,我们使用Xilinx virtex-7 FPGA进行了并验证模块化乘数。实验结果表明,它可以在0.56 µs中执行256位模块化乘法,吞吐量速率高达4999.7 Mbps。关键字:模块化乘法,高吞吐量,超高radix分类:集成电路(内存,逻辑,模拟,RF,传感器)
环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,从深思熟虑的规划开始。在训练和任务期间,始终注意保护环境的方法。这样做,您将为维持我们的训练资源做出贡献,同时保护人民和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务时完成当前的深思熟虑风险评估工作表,评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 训练期间,领导者必须确保对人员进行监控,以防潜在的热损伤。在高温类别增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW 当前的 CBRN 原则。所有行动都将保护和维护陆军人员和财产,避免意外损失。程序将确保与陆军行动和活动相关的公共安全以及安全和健康的工作场所、程序和设备。遵守有关电力、电缆和线路的所有安全和/或环境预防措施。在设备操作期间提供排气通风,并在需要时使用听力保护装置,如《武器装备 AR 385-10》、《清洁空气法案》(CAA)和 CAA 修正案以及 OSHA 危害通报标准。事故是陆军任务、战备、士气和资源的不可接受的障碍。各级决策者将采用风险管理方法,有效排除与此任务相关的人员和财产安全不可接受的风险。(a)承担个人责任。(b)实践安全操作。(c)识别不安全行为和条件。(d)采取行动防止事故发生。(e)报告不安全行为和条件。禁止在电气设备(CPU、文件服务器、打印机、投影仪等)附近或周围放置任何食物或饮料,因为可能会造成触电或设备损坏。在这些区域内或穿过这些区域时,请小心谨慎。避开所有电线和相关线路。如果遇到雷暴天气,您将被要求关闭设备电源。
另外,QTerminals 在其 X 平台上表示,“滚装船数量本月(2024 年 12 月)创下新高,凸显了我们在处理特殊货物方面的专业知识日益增长。” 该帖子指出,哈马德港在 2024 年 12 月接收了 151 艘船只,而集装箱、散货、散货和滚装船的吞吐量分别为 121,365 TEU、14,633 F/T(货运吨)、35,139 F/T 和 16,681 单位。 QTerminals 每年在哈马德港处理超过 232,000 公吨的大麦,在支持卡塔尔的食品和饲料行业方面发挥着至关重要的作用。 这一关键的进口确保了基本成分的稳定供应,为国家的粮食安全做出了贡献。 作为卡塔尔通往世界贸易的主要门户,哈马德港已实施了一系列措施来保护环境和应对气候变化。 P3
对于数据库管理系统(DBMSS)来说,实现高吞吐量和低承诺潜伏期一直是一个艰巨的挑战。正如我们在本文中所显示的那样,现有的提交处理协议无法完全利用现代的NVME SSD来提供高吞吐量和低延迟耐用的提交。因此,我们提出了自主提交,这是第一个完全利用现代NVME SSD来实现这两个目标的提交协议。我们的方法可以说明SSD的高平行性和低写入延迟,使工人能够以较小的批量清楚地编写日志,从而微不足道,从而使日志记录I/O对承诺延迟的影响很小。另外,通过平行确认程序,DBMS通过一组交易来检查其提交状态,我们可以减轻高通量工作负载中的单线读取提交操作导致的过度延迟。我们的实验结果表明,自主提交可在广泛的工作量上实现出色的可伸缩性和低延节耐用性。
抽象的金属氧化物太阳能吸收剂非常适合光电化学应用,在该应用中,必要的特性还包括在高度氧化环境中的稳定性,除了太阳能转化。金属杂质特别关注的是,由于其相对较低的带隙能量与传统的宽间隙光催化剂相比。基于BIVO 4的光轴的共同努力揭示了多种途径,用于提高高于2.5 eV的光子能量的太阳转换效率,但尚未解决不可思议的高带隙能的最终性能限制。fe和cr杂质具有较低的带隙,因此具有较高的潜在太阳转换效率,尽管迄今为止,吸收的2-2.5 eV光子未有效地转换为所需的阳极光电流。通过使用组合合成和高吞吐量筛选,我们证明了用单斜晶MVO 4相(M = Cr,Fe)取代了该能量范围内光子的利用率。鉴于可用的光阳极改进技术组合,我们建议优化(Cr 0.5 Fe 0.5)基于VO 4的光轴,这是启用太阳能燃料技术的有希望的路径。