人们认识到,遗传改变的小鼠在理解许多疾病的病理生理学方面的重要性是多么重要,包括癌症,心脏和代谢疾病,以及提高我们对基本生理学的了解。创造,繁殖和维持转基因的动物,我们将确保生成的动物以最高的健康和福利标准生产,从而实现更可重现和可发表的研究。因此,我们能够招募高质量的研究科学家。动物部门具有创建,育种和饲养这些动物的专业知识,以完全控制提供直接福利福利的育种计划,并且在行政上有效地确保最小浪费,从而使几个研究计划都可以使用相同的动物系列,并在指定的时间范围内育种项目需求。
动物在复杂的环境中进化,产生了各种各样的行为,包括导航、觅食、捕食和同种动物的相互作用,这些行为在从几毫秒到几天的时间尺度上发生变化。从历史上看,这些行为一直是生态学和动物行为学研究的重点,而系统神经科学主要关注可以重复数千次并在高度人工环境中发生的短时间尺度行为。得益于机器学习、小型化和计算方面的最新进展,现在有可能在更自然的条件下研究自由移动的动物,同时应用系统技术:执行时间特定的扰动、建模行为策略以及在动物自由移动时记录大量神经元。这篇评论的作者是一群对系统神经科学、生态学和动物行为学的共同目标深表赞赏的科学家。我们相信,现在是成为一名神经科学家的激动人心的时刻,因为我们有机会作为一个领域成长,接受跨学科、开放、协作的研究,以提供新的见解,并让研究人员能够跨学科、跨物种、跨规模地联系知识。在这里,我们结合自己的工作,讨论了动物行为学、生态学和系统神经科学的起源,并强调了如何将这些领域的方法结合起来为我们的研究提供新的见解。我们希望这篇评论能促进这些互动和联盟,并帮助我们一起做更好的科学研究。
推荐引用推荐引用Giri,Atanu,“解密的啮齿动物行为:通过行为神经科学中的高吞吐量数据分析来揭示复杂的决策”(2024)。开放访问论文和论文。4245。https://scholarworks.utep.edu/open_etd/4245
狗钩虫(Ancylostoma caninum)仍然是狗的重要病原体,能够引起严重的贫血,甚至在幼犬和衰弱的狗中死亡(Bowman 2020)。这对天然发生的多动药抗药性(MADR)分离株的出现和传播加剧了(Kitchen等人2019; Jiminez Castro等。2019,2020,2021; Venkatesan等。2023; McKean等。2024)。与狗的驱虫测试以及寄生虫严格的宿主特异性相关的成本和道德问题是对治疗Madr Hookworms的新药物开发的严重障碍。开发用于抗体曲霉的啮齿动物模型将消除这些障碍。成功地感染了与同一属的通才钩虫Ancylostoma ceylanicum感染免疫缺陷的小鼠,尽管具有完全功能的免疫系统不是允许的宿主的小鼠,但已有率(Langeland et al。2024)。在此,我们报告的结果表明,宿主建立所必需的宿主 - 寄生虫相互作用的特异性在同一线虫属的成员之间差异很大,因为尽管免疫抑制或缺乏症,但专业寄生虫A. caninum仍无法感染非烷基宿主的宿主。
啮齿动物的抽象记录技术在过去十年中取得了巨大进步,使用户可以同时从多个大脑区域进行样品采样数千个神经元。这促使需要数字工具套件来帮助策划解剖数据,但是,现有工具要么提供有限的功能,要么要求用户熟练地编码使用它们。为了解决这个问题,我们创建了草药(在啮齿动物大脑空间中的组织学E-DATA注册),这是一种适用于啮齿动物用户的新工具,可通过用户友好的图形用户界面提供广泛的功能。在实验之前,可以使用草药计划植入电极,靶向病毒注射或示踪剂的坐标。实验后,用户可以注册记录电极位置(例如神经偶像和四极管),病毒表达或其他解剖特征,并以2D或3D的形式可视化结果。Additionally, HERBS can delineate labeling from multiple injec- tions across tissue sections and obtain individual cell counts.Regional delineations in HERBS are based either on annotated 3D volumes from the Waxholm Space Atlas of the Sprague Dawley Rat Brain or the Allen Mouse Brain Atlas, though HERBS can work with compatible volume atlases from any species users wish to install.草药允许用户滚动浏览数字大脑地图集,并在卷中提供定制的角度切片,并支持组织截面的自由转变为Atlas Slices。此外,草药允许用户与单个动物的组织重建3D脑网格。草药是一种多平台开源Python软件包,可在PYPI和GitHub上使用,并且与Windows,MacOS和Linux操作系统兼容。
• 行为评估最好在专门的行为套件中进行。 • 环境应远离可能影响动物行为的不受控制的外部刺激,例如人流、不必要的噪音和强光。 • 应分别测试雄性和雌性啮齿动物,每次只测试一种性别的啮齿动物。如果可能,应先测试雄性,最好在不同的日子进行,但至少要彻底清洁两性之间的啮齿动物。除非啮齿动物已经关在铁丝笼或类似笼子中,并且两性啮齿动物都在同一个房间。 • 实验者不能使用气味强烈的除臭剂或香水,并且必须有处理啮齿动物的经验,并接受过行为范式和所用设备的培训。 • SOP 的变化。如果您正在进行消退或回忆测试,恐惧条件化可能会随着提示刺激类型、给予的电击量和强度、试验间隔时间的变化而变化。任何超出本 SOP 详细说明的内容都必须向 AEC 说明,以获得他们的批准。 • 如果想要使用新气味,您必须在开始实验之前与行为设施经理讨论此事。• 16000Hz 音调已经过测试并被证明是有效的;此音调有经过验证的放大器设置。如果使用不同的声音提示,用户有责任使用分贝计确定合适的放大器设置。每个盒子中的声音不应比约 75-80dB 安静得多(因为动物可能难以区分背景噪音)或大声得多(因为震耳欲聋的声音本身可能令人厌恶)。
信件和材料请求应发给Ricardo Mallarino。rmallarino@princeton.edu。作者贡献M.R.J.和R.M.构思了该项目并设计了实验。M.R.J. 进行了RNA-SEQ实验和大量RNA-Seq分析。 S.L. 在S.A.M.的帮助下,在条纹小鼠中进行了体外和体内基因组编辑。 和J.A.R.-P。 M.R.J. 和S.L. 对基因组编辑的动物进行了所有下游加工和分析。 下午和S.Y.S. 进行了数学建模。 C.F.G.-J. 在M.R.J.的支持下领导了SCRNA-SEQ分析。 和Q.N. M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.进行了RNA-SEQ实验和大量RNA-Seq分析。S.L. 在S.A.M.的帮助下,在条纹小鼠中进行了体外和体内基因组编辑。 和J.A.R.-P。 M.R.J. 和S.L. 对基因组编辑的动物进行了所有下游加工和分析。 下午和S.Y.S. 进行了数学建模。 C.F.G.-J. 在M.R.J.的支持下领导了SCRNA-SEQ分析。 和Q.N. M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。S.L.在S.A.M.的帮助下,在条纹小鼠中进行了体外和体内基因组编辑。和J.A.R.-P。 M.R.J.和S.L.对基因组编辑的动物进行了所有下游加工和分析。下午和S.Y.S. 进行了数学建模。 C.F.G.-J. 在M.R.J.的支持下领导了SCRNA-SEQ分析。 和Q.N. M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。下午和S.Y.S.进行了数学建模。C.F.G.-J. 在M.R.J.的支持下领导了SCRNA-SEQ分析。 和Q.N. M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。C.F.G.-J.在M.R.J.的支持下领导了SCRNA-SEQ分析。和Q.N.M.R.J.,B.J.B. 和R.M. 进行原位杂交。 M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.,B.J.B.和R.M.进行原位杂交。M.R.J.,B.J.B.,S.A.M。 和R.M. 进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。 M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.,B.J.B.,S.A.M。和R.M.进行了条纹小鼠和实验室小鼠组织的表型表征,包括免疫荧光和组织学。M.R.J. 和S.A.M. 进行了黑素细胞细胞培养实验。 J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.和S.A.M.进行了黑素细胞细胞培养实验。J.A.M. 进行了进化分析。 C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。J.A.M.进行了进化分析。C.Y.F. 产生了横纹肌的MUS基因组和抬高注释。 J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。C.Y.F.产生了横纹肌的MUS基因组和抬高注释。J.G. 和A.P. 生成了永生的横纹纤维细胞。 M.R.J. 和R.M. 用所有作者的输入写了手稿。J.G.和A.P.生成了永生的横纹纤维细胞。M.R.J. 和R.M. 用所有作者的输入写了手稿。M.R.J.和R.M.用所有作者的输入写了手稿。
过去十年,啮齿动物的记录技术取得了巨大进步,使用户可以同时从多个大脑区域采样数千个神经元。这促使人们需要数字工具包来帮助整理解剖数据,但是,现有工具要么功能有限,要么要求用户精通编码才能使用它们。为了解决这个问题,我们创建了 HERBS,这是一种针对啮齿动物用户的综合新工具,它通过用户友好的图形用户界面提供广泛的功能。在实验之前,HERBS 可用于规划植入电极、靶向病毒注射或示踪剂的坐标。实验后,用户可以注册记录电极位置(例如 Neuropixels、四极体)、病毒表达或其他解剖特征,并以 2D 或 3D 形式可视化结果。此外,HERBS 可以描绘组织切片中多次注射的表达并获得单个细胞计数。 HERBS 中的区域划分基于来自 Sprague Dawley 大鼠脑 Waxholm 空间图集或 Allen 小鼠脑图集的带注释的 3D 体积。HERBS 允许用户滚动浏览数字脑图集,并提供自定义角度切片,并支持将组织切片自由转换为图集切片。此外,HERBS 还允许用户使用来自单个动物的组织重建 3D 脑网格。HERBS 是一个多平台开源 Python 包,可在 PyPI 和 GitHub 上获取。
摘要 韦伯-费希纳定律认为,我们感知到的感觉输入会随着物理输入以对数方式增加。海马“时间细胞”在触发刺激后的一段有限时间内依次放电,记录最近的经验。不同的细胞在不同的延迟下具有“时间场”,延迟时间至少可达数十秒。过去的研究表明,时间细胞代表了一条压缩的时间线,因为延迟后期放电的时间细胞较少,时间场较宽。本文探讨时间细胞的压缩是否遵循韦伯-费希纳定律。使用分层贝叶斯模型研究了时间细胞,该模型同时考虑了试验水平、细胞水平和群体水平的放电模式。该程序允许分别估计试验内感受野宽度和试验间变异性。分离试验间变异性后,时间场宽度随延迟线性增加。此外,时间细胞群体沿对数时间轴均匀分布。这些发现提供了强有力的定量证据,表明啮齿动物海马中的神经时间表征具有对数压缩性,并且遵循神经韦伯-费希纳定律。