心脏代谢疾病是世界上发病和死亡率的主要主要原因之一。个体中一系列代谢风险因素的共存,促使Reven将其视为一种称为“ X综合征”的综合征。该术语后来演变了,健康状况今天称为“心脏代谢综合征”(CMS)。在过去几年中,对CMS的病理生理学的理解取得了重大进展。能够充分评估心脏代谢风险(CMR)对于正确诊断,预防和更好地管理CMS至关重要,因为这可能有助于减慢其进展和并发症。这在潜在治疗策略的临床前和临床评估中也可能有用。已经开发了几种方法来评估在慢性和临床环境中发展心脏代谢疾病的风险。但是,这些方法应用于涉及啮齿动物的简短和实验设置时的局限性。因此,该评论旨在重新定义和突出要重新考虑心脏代谢综合征定义中的主要风险因素;并提出了一种评估啮齿动物中CMR的综合估计方法。这与对CMS一词的适当利用和实验环境中治疗靶标的深入评估有关。1。背景自1988年以来,已经在临床和基础研究环境中对代谢和心血管疾病之间的相互作用进行了深入研究。为此,已经开发了许多计算器系统。在本课程中,用来描述患者同时发生的代谢和心血管疾病簇的术语已经发展。的确,这首先被Reaven [1]称为“综合症X”,随后将其重命名为“代谢综合征”,因为胰岛素抵抗,血压血压,高血压和肥胖之间的关联变得更加明显[2-5]。在过去的几十年中,“代谢综合征”一词被重新调整为“心脏代谢综合征”(CMS),因为代谢功能障碍对发展心血管疾病(CVD)的风险的显着贡献,以及对病因和病理学机制的相似之处[CVD)[6-7]。评估心脏代谢风险(CMR)对于确定发展心血管和其他代谢事件并开始适当治疗的风险至关重要[8-9]。但是,它们在临床环境中大多是相关的,而在动物实验的背景下存在几个局限性,因为某些参数无法在短期实验中测量。面临这些局限性,有必要在实验动物中开发更全面的CMR估计方法
系统的评论和荟萃分析在临床前研究中越来越多地认可,但在行为神经科学中并未广泛探索它们的应用。在这项工作中,我们研究了蛋白质合成抑制,这是一种经典的干预措施,用于破坏啮齿动物的恐惧学习,重新溶解和灭绝,以探讨荟萃分析如何识别其影响的潜在调节剂。我们最初对不同的注射位点和目标会话进行了单独的荟萃分析,以评估各种情况下干预的影响。通过汇总各个站点的多级元回归模型进一步研究了异质性,文章或研究小组是其他级别。我们检测到培训抑制剂对训练和重新溶解的强大影响,但不能灭绝,这可能是由于后者的研究数量较低。我们的分析确定了一些良好的主持人,例如干预时机和重新暴露持续时间。然而,提出的其他因素作为重新整合的边界条件(例如记忆年龄和训练强度)与影响的大小无关。我们的结果表明,荟萃分析在巩固文献中的结果中的价值,但我们认为,数据合成所提出的提示的提示应理想地通过良好的,严格的,严格的,严格的共同实验来验证。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月6日。 https://doi.org/10.1101/2025.02.01.636078 doi:biorxiv Preprint
摘要 葡萄糖是大脑的必需燃料,但葡萄糖和乳酸对神经元能量代谢的相对贡献尚不清楚。我们发现,增加乳酸(而不是葡萄糖浓度)会增强大脑皮层神经元的放电活动。增强的放电依赖于由 KCNJ11 和 ABCC8 亚基形成的 ATP 敏感性钾 (K ATP ) 通道,我们表明这些通道在大多数新皮质神经元类型中都有功能性表达。我们还展示了皮质神经元吸收和代谢乳酸的能力。我们进一步揭示,皮质神经元主要通过氧化磷酸化产生 ATP,仅少量通过糖酵解产生。我们的数据表明,在活跃的神经元中,乳酸比葡萄糖更适合作为能量底物,并且乳酸代谢通过 K ATP 通道影响新皮质的神经元活动。我们的研究结果强调了神经元和星形胶质细胞之间的代谢串扰对大脑功能的重要性。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
对阳性强化的行为反应改变是注意力缺陷多动障碍(ADHD)的核心赤字。自发性高血压大鼠(SHR)是一种先天动物菌株,表现出对增强的类似反应。在啮齿动物模型中,这种遗传确定的表型的存在允许对潜在的神经机制进行实验研究。在行为上,SHR表现出对立即增强的偏好,与其他大鼠菌株相比,相对于综合增强历史的个人实例的敏感性提高了增强实例的敏感性,增强梯度的延迟较高。SHR还显示出较少的动力来接近感觉刺激或提示,这些刺激或提示在重复的提示奖励配对后预测奖励。我们考虑了这些特征的潜在神经机制。众所周知,中脑多巴胺神经元最初是通过意想不到的奖励激活的,并逐渐将其反应转移到预测预测的提示上。这一发现启发了多巴胺转移赤字(DTD)假设,该假设预测了某些行为效应,这将是由于多巴胺反应从实际奖励到预测提示的提示而产生的。我们认为,DTD预测了SHR和ADHD个人中对增强的反应改变。这些对加强的反应反应反过来预测了多动症的核心症状。我们还建议,多巴胺转移程度的变化可能是与增强敏感性改变有关的人格维度的差异。这样做,我们强调了啮齿动物模型对人格研究的价值。
摘要 准确提取磁共振成像 (MRI) 数据中的脑组织对于分析大脑结构和功能至关重要。虽然已经优化了几种常规工具来处理人脑数据,但目前还没有可推广的方法来提取啮齿动物、非人类灵长类动物和人类的多模态 MRI 数据的脑组织。因此,开发一种灵活且可推广的方法来提取跨物种的整个脑组织将使研究人员能够更有效地分析和比较实验结果。在这里,我们提出了一个领域自适应的半监督深度神经网络,称为脑提取网络 (BEN),用于提取跨物种、MRI 模态和 MR 扫描仪的脑组织。我们已经在 18 个独立数据集上评估了 BEN,包括 783 个啮齿动物 MRI 扫描、246 个非人类灵长类动物 MRI 扫描和 4601 个人类 MRI 扫描,涵盖五个物种、四种模态和六种具有不同磁场强度的 MR 扫描仪。与传统工具箱相比,BEN 的优越性体现在其稳健性、准确性和通用性上。我们提出的方法不仅为跨物种提取脑组织提供了通用解决方案,而且显著提高了图谱配准的准确性,从而有利于下游处理任务。作为一种新型的全自动深度学习方法,BEN 被设计为一种开源软件,可在临床前和临床应用中实现跨物种神经影像数据的高通量处理。
非侵入性神经调节技术,包括经颅直流电刺激 (tDCS),已被证明可以调节神经元功能,并用于认知神经科学和治疗神经精神疾病。在这种情况下,动物模型提供了一种强大的工具来识别 tDCS 的神经生物学作用机制。然而,找到一个易于使用且允许各种刺激参数的电流发生器可能很困难和/或昂贵。在这里,我们介绍了 Open-tES 设备,这是一个在协作平台 Git-Hub 上共享的知识共享许可 (CC BY、SA 4.0) 下的项目。该电流发生器允许实现 tDCS(和其他类型的刺激),适用于啮齿动物,易于使用且成本低廉。已经进行了特性分析以测量所输送电流的精度和准确度。我们还旨在将其效果与临床试验中使用的商业刺激器(DC-Stimulator Plus,Neuro-Conn,德国)进行比较。为了实现这一目标,我们进行了一项行为研究,以评估其在减少小鼠抑郁相关行为方面的功效。刺激器的精度和准确度分别优于 250 nA 和 25 nA。本研究对小鼠进行的行为评估未发现临床试验中使用的商业刺激器和 Open-tES 设备之间存在任何显著差异。刺激器的准确度和精确度确保了刺激的高可重复性。该电流发生器是一种可靠且廉价的工具,可用于非侵入性脑电刺激领域的临床前研究。
使用小鼠和大鼠模型进行神经接口领域已经取得了进展,但这些模型的可互换性的标准化尚未建立。小鼠模型允许使用转基因、光遗传学和先进的成像方式,可用于检查与神经植入物本身相关的生物影响和故障机制。直接比较小鼠和大鼠模型之间的电生理数据的能力对于神经接口的开发和评估至关重要。这两种啮齿动物模型中最明显的区别是尺寸,这引起了人们对设备引起的组织应变作用的担忧。植入的微电极阵列对脑组织施加的应变被认为会影响长期记录性能。因此,了解植入物与组织尺寸比差异引起的组织应变的任何潜在差异对于验证大鼠和小鼠模型的可互换性至关重要。因此,本研究旨在调查电生理差异和预测设备引起的组织应变。从植入动物身上收集了 8 周的大鼠和小鼠电生理记录。使用有限元模型评估植入皮层内微电极的组织应变,同时考虑到两种模型在皮层深度、植入深度和电极几何形状方面的差异。与小鼠模型相比,大鼠模型在急性而非慢性时间点记录单个单元活动的通道百分比和每个通道记录的单元数量更大。此外,有限元模型还显示两种啮齿动物模型之间在组织应变方面没有预测差异。总的来说
哺乳动物脑皮质的进化膨胀和折叠是由胚胎发育过程中祖细胞扩增的。从近亲分裂后,在啮齿动物谱系中逆转了此过程,导致大脑较小且光滑。啮齿动物进化中这种继发损失的遗传机制仍然未知。我们表明,microRNA mir-3607在远离灵长类动物和雪貂的大型皮质中以胚胎的形式表达,远离灵长类动物的谱系,但在小鼠中却没有。miR -3607在胚胎小鼠皮质中的实验表达导致Wnt/ -catenin信号传导增加,径向胶质神经胶质细胞的扩增(RGC)和心室区域(VZ)的扩展,通过阻断 -catenin抑制剂APC(腺苷polypismatom polypismis Coli)。因此,雪貂中内源性miR-3607的损失减少了RGC增殖,而人脑器官的过表达促进了VZ的扩张。我们的结果确定了一个在哺乳动物进化过程中选择用于次要损失的基因,以限制啮齿动物中的RGC扩增和可能的皮质大小。