1942 年 10 月 7 日,华盛顿特区物资司令部上校 BW Chidlaw,AC/S(E) 指示莱特机场物资中心妥善规划和推进喷气式发动机和喷气式飞机的开发。英国和美国的发展已经达到了一个阶段,重要的战术可能性似乎迫在眉睫。随后,华盛顿特区物资司令部指示莱特机场物资中心建立一个组织,负责喷气式发动机和飞机的研究和开发。该组织于 1942 年 12 月 11 日在莱特机场成立。技术人员、动力装置实验室内的这个小团体还与莱特机场工程部飞机实验室的单位合作。
1942 年 10 月 7 日,华盛顿特区物资司令部上校 BW Chidlaw,AC/S(E) 指示莱特机场物资中心妥善规划和推进喷气式发动机和喷气式飞机的开发。英国和美国的发展已经达到了一个阶段,重要的战术可能性似乎迫在眉睫。随后,华盛顿特区物资司令部指示莱特机场物资中心建立一个组织,负责喷气式发动机和飞机的研究和开发。该组织于 1942 年 12 月 11 日在莱特机场成立。技术人员、动力装置实验室内的这个小团体还与莱特机场工程部飞机实验室的单位合作。
摘要:开发了一种计算机视觉算法,以确定以5-10 m/s范围内以速度行驶的水气体混合物的两相湍流射流的参数,以评估实时质量交换设备的流体动力效率,并预测汽油汇率。该算法基于阈值分割,主动轮廓方法,主成分方法的回归和特征叠加层的比较,这可以稳定地确定喷气边界,并且在使用低质量数据时是一种比传统的方法更有效的方法。基于喷气机的高速视频记录,提出的算法允许计算Jet的关键特征:速度,入射角,结构密度等。讨论了算法的描述和基于在喷气生物反应器的实验原型上创建的真实喷气机的视频记录的测试应用程序。将结果与计算流体动力学建模和理论预测进行了比较,并证明了良好的一致性。提出的算法本身代表了喷气生物反应器中曝气器操作的实时控制系统的基础,并在实验室喷射流安装中使用,用于积累有关JET的结构和动态性能的大数据。
32活页夹喷气添加剂制造(BJAM)提出了一条用于高级制造的途径,该途径是由于高沉积速率,可伸缩性和几何灵活性,用于33种各种高价值材料。34然而,BJAM中的常规有机粘合剂在热解时会引入残留碳,通常35导致最终烧结部分中的合金组成不精确。粘合剂燃烧的不良残留碳36由于对碳添加的37个敏感性,BJAM限制了BJAM在高性能合金中的应用。在这项研究中,我们设计了聚(乙烯基吡咯烷酮-CO-乙烯基38乙酸)(PVP-VAC)作为BJAM的干净燃烧粘合剂,在VAC 39中,过量的氧气可实现清洁剂燃烧并减少残留碳保留率。与广泛使用的40个商业活页夹相比,优化的PVP-VAC粘合剂在H13工具钢中将残留碳保留率降低了90%41。残留碳的显着降低可预测的打印和42随后对复杂的H13工具钢几何形状进行烧结,这是一种已知的合金,由于碳添加碳的烧结而变形,因此在失真周围面临着重大的43个挑战。干净的倦怠粘合剂的设计44通过启用新的AM Designs 45和对成分敏感的高性能合金的应用,为BJAM提供了一条主要的途径,例如基于镍的46种超级合金,钛合金和高合金钢。47 48 49 50简介
它的优雅表达了某种无法用语言描述的东西。水晶的多样和独特的形状一直令人着迷。也许是它的硬度传达了一种持久的感觉。或者是因为它是在山深处形成的,只有经过漫长而艰辛的旅程才能出现。或许是因为它起源和形成的细节将永远是个秘密。无论如何,有一件事是肯定的:它的美丽激发了想象力。
1数据科学研究所,应用科学与艺术大学瑞士西北大学(FHNW),Bahnhofstrasse 6,5210 Windisch,瑞士windisch,电子邮件:andrea.battaglia@fattaglia@fhnw.ch 2 27,8039瑞士苏黎世3地球和太空科学学院,北京大学,北京大学,100871年,中国公关4物理研究所,大学Plats 5,8010 Graz,Austria,奥地利5 Skolkovo科学技术研究所,Bolshoy Bowlevard 30,Bld。1,121205俄罗斯莫斯科6号太阳能和环境研究的讲座天文台,格拉兹大学,坎泽尔霍时代19,9521,奥地利特雷芬7莱布尼兹莱布尼兹天体物理学研究所Potsdam(AIP) Daccó”,Universitàdellasvizzera Italiana,通过Patocchi 57,6605瑞士Locarno,瑞士9 Physikalisch-MeTEOROLOGICALIOG OBSEROLOGIOL PAVOSATOR DAVOS,世界辐射中心,7260 DAVOS DORF,瑞士DAVOS DORF,瑞士10号太空科学实验室,加利福尼亚大学7 Gauss University,7 Gauss Way,94720 berkeley,Ucarkeley <
在大学航空飞行项目课程中设计和实施顶点喷气式飞机过渡课程 Chadwin T. Kendall 先生 丹佛都市州立大学 R. Rhett C. Yates 博士 杰克逊维尔大学 摘要 过去二十年,先进的支线喷气式飞机模拟器,特别是庞巴迪和巴西航空工业公司系列,在大学航空界越来越受欢迎。这些模拟器的课程和项目应用为先进系统和机组资源管理 (CRM) 课程的改进、学术研究和招生铺平了道路。与此同时,美国航空公司,尤其是地区航空公司,鼓励进入其领域的大学航空学生接受喷气式飞机过渡培训。此外,经国际航空认证委员会 (AABI) 认可的大学航空项目必须具有飞行教育的终极高年级体验,其中可能包括顶点课程。大学航空项目现在可以使用这些喷气式飞机模拟器创建顶点课程。在顶点课程中使用支线喷气式飞机模拟器将允许课程评估飞行员技能并评估机组人员环境中的航空决策。它将允许大学航空课程评估其课程目标和学生学习成果,并为学生进入航空职业生涯的下一阶段做好准备。本文讨论了在大学航空中使用支线喷气式飞机模拟器设计和实施顶点喷气式飞机过渡课程。关键词:喷气式飞机过渡课程、CRM、顶点课程、课程、大学航空版权声明:作者保留在 AABRI 期刊上发表的手稿的版权。请参阅 AABRI 版权政策,网址为 http://www.aabri.com/copyright.html
很多重点是研究其运作,降级和最终(最终)的原则。投资新的路线以提高电池的容量和寿命,需要在其操作的各个阶段仔细表征组成型材料,或者更好地观察他们在设备运行时获取信息的能力。在这些方法中,Operando Liquid-Cell透射电子显微镜(也称为原位液体传输电子显微镜(TEM))在文献中受到了很大的关注。[1-7]对于这种技术,微制造用于创建两个硅芯片,每芯片都涂有一层薄层的氮化硅(SIN X)。然后将硅在本地蚀刻以形成悬浮的电子透明罪x窗口。其中一种芯片通常用图案化的光片涂层,该光片可以用作定义细胞厚度的间隔器。可以在两个Si芯片之间密封一层液体(这称为液体电池)。可以在液体环境中与液体环境中的电子成像,在TEM列中,可以用电子成像,从而规避高真空吸尘器的严格要求。当将这种方法用作研究电化学系统的操作技术时,用2或3个电触点对芯片进行了图案,并且其中至少有一个(称为工作电极)位于Sin X窗口区域上。这种方法进一步称为电化学TEM(EC-TEM),已用于研究燃料电池和电池系统。[1,3,8,9] EC-TEM面临的最大挑战之一是对电极的可靠制备,必须足够薄才能通过液体电池进行电子传输,并且必须仔细地将其定位在con-tact上(需要在10 µm的订单下定位精度)。此外,在机械应变下稀薄的Sin X窗户可以很容易地破裂,并且液体细胞可能会遭受不完美的密封,从而使显微镜真空降解。因此,迄今为止的许多EC-TEM研究都集中在实验期间在工作电极上电沉积的感兴趣材料(例如Li Metal)的系统。[1,3,10]以这种方式,感兴趣的材料仅限于电极,并且在实验之前不需要大量的样品准备。因此,关于工业相关材料的EC-TEM文献通常是不相容的,因为它们通常是不兼容的
