摘要:固体器官移植(SOT)受体因其受抑制的免疫力而受到COVID-19感染的风险增加。可用的数据显示,在SOT接收者中,Covid-19疫苗的有效性较低。我们旨在评估SOT受体中COVID-19疫苗剂量的数量增加,并确定影响该人群中疫苗反应的因素。进行了系统的综述和荟萃分析,以识别SOT受体中CoVID-19疫苗后的持续和完整的对体液和细胞免疫的研究。搜索以45个重复项检索了278个结果,而43个记录与纳入标准不符。标题和摘要筛选后,我们保留了189个记录,排除了135个记录。排除的原因涉及对免疫功能低下的患者(非移植接受者),透析患者以及已经从SARS-COV-2感染中康复的人的研究。包括55项观察性研究和随机临床试验(RCT)。在第三,第四和第五剂量之后,响应者的比例出现较高。无反应的危险因素包括年龄较大和使用霉酚酸酯,皮质类固醇和其他免疫抑制剂。这项系统的综述和荟萃分析证明了SOT患者中不同剂量的COVID-19疫苗后的免疫原性。由于疫苗的免疫原性低,可能需要采取其他改善疫苗反应的策略。
Appendix A TSANZ Advisory Committees & Working Groups, terms of reference 168 Appendix B Process report 169 Appendix C Kidney allocation algorithms 174 Appendix D Liver donor allocation flow diagram 177 Appendix E Guidelines for lung donor bronchoscopy & CT chest 178 Appendix F National notification for lung transplantation 180 Appendix G Heart matching algorithm 181 Appendix H Currently recognised transplant units 182 Appendix I Summary of recommendations for infectious disease screening in deceased donors 185 Appendix J Further resources for assessing risk of donor-derived malignancy 189 Appendix K Family history of cancer and cancer genes 191 Appendix L Information on Australian and New Zealand cancer registries 192 Appendix M Recommendations on the use of organs from donors with CNS tumours 197 Appendix N肾脏/胰腺和胰腺分配算法199
Roderick,P.,Metcalfe,W.,Forsythe,J.L.R.,Dudley,C.,Watson,C.J.E.,Bradley,J. A.和Bradley,C。(2021)。 生活质量(QOL)和其他患者报告的结果指标(PROM)在客场供体和死者肾脏肾脏移植受者中的变化,以及在英国ATTOM计划中等待移植的人:一项纵向群众群体问题问卷调查,并进行其他定性访谈。 BMJ Open,11(4),E047263。 https://doi.org/10.1136/bmjopen-2020-047263Roderick,P.,Metcalfe,W.,Forsythe,J.L.R.,Dudley,C.,Watson,C.J.E.,Bradley,J.A.和Bradley,C。(2021)。生活质量(QOL)和其他患者报告的结果指标(PROM)在客场供体和死者肾脏肾脏移植受者中的变化,以及在英国ATTOM计划中等待移植的人:一项纵向群众群体问题问卷调查,并进行其他定性访谈。BMJ Open,11(4),E047263。https://doi.org/10.1136/bmjopen-2020-047263
器官移植是现代医学最杰出的成就之一,从而能够保护无数的生活。同时,人体器官移植技术的进步为管理和治愈多种病理的前景带来了良好的前景。然而,器官移植的主要障碍仍然是供体器官的严重缺乏。当前的策略,例如捐赠者捐赠,异种移植,器官,3D打印和其他方式有望减轻这种困境。但是,各种障碍仍然困扰着这些技术的临床前和临床应用。例如,尽管具有巨大的潜力,但迄今为止,仅在大鼠和小鼠中才能成功实现种类嵌合体的成功实现。降低了动物胚胎中人多能干细胞的嵌合效率可归因于次优培养条件,进化差异以及多能干细胞的发育不兼容。在这个领域仍有许多问题要解决。它旨在深入研究器官移植,胚泡补充的生理学进步,增强种间嵌合体的效率的策略以及对此领域的道德考虑。此外,制造不同类型的器官和移植后免疫排斥反应仍然是全球利益的主体。该研究主题试图详细概述器官移植学科的最新进展。免疫排斥是影响移植器官存活的关键因素。对免疫排斥的抑制是移植研究领域的关键目标。尽管许多研究人员坚持认为自适应免疫系统是影响移植排斥反应的基本因素,但先天免疫在这一过程中的作用越来越受到审查。Zhang等。 介绍了自噬如何调节这些过程的回顾,并提出了减轻免疫排斥的潜在靶标。 首先,几种至关重要的自噬相关蛋白可以直接与PRR相互作用或Zhang等。介绍了自噬如何调节这些过程的回顾,并提出了减轻免疫排斥的潜在靶标。首先,几种至关重要的自噬相关蛋白可以直接与PRR相互作用或
该研究领域的主要限制之一是用于训练机器学习和深度学习模型的数据的可用性。目前大多数研究使用 UNOS 注册数据库,并报告了可用于训练模型的数据量有限。人们认为,使用更多数据来训练模型,模型将给出更准确的预测。由于患者和捐赠者的特征以及研究中的选择标准随时间变化,所有模型的性能都随着时间的推移而下降。此外,当模型给出预测时,有时研究人员无法解释它给出预测的原因,例如风险评分。因此,医生无法可靠地将其用于某些患者的独特情况。
摘要:自适应免疫反应在SARS-COV-2感染的临床过程中起重要作用。虽然对病毒特异性防御的评估通常集中在体液反应上,但细胞免疫对于成功控制感染至关重要,而细胞毒性T细胞的早期发展与有效的病毒清除率有关。针对SARS-COV-2的疫苗接种可引起CD4+和CD8+ T细胞反应,并允许保护严重的Covid-19,包括患有当前循环变体的感染。 然而,在免疫功能低下的个体中,第一个数据意味着自然感染和疫苗接种后,SARS-COV-2特异性免疫反应受到了显着损害。 因此,这些高风险群体不仅需要在常规临床实践中,而且需要在未来的疫苗接种策略的发展中进行特殊考虑。 为了协助医生进行免疫受损的患者的指导,有关感染的治疗或(加强)疫苗接种的受益人,本综述旨在简明概述有关SARS-COV-2特定的细胞性免疫反应的当前知识。 关于这些不同免疫功能低下的人群中有关病毒特异性细胞免疫力的最新发现可能会影响未来的临床决策。针对SARS-COV-2的疫苗接种可引起CD4+和CD8+ T细胞反应,并允许保护严重的Covid-19,包括患有当前循环变体的感染。然而,在免疫功能低下的个体中,第一个数据意味着自然感染和疫苗接种后,SARS-COV-2特异性免疫反应受到了显着损害。因此,这些高风险群体不仅需要在常规临床实践中,而且需要在未来的疫苗接种策略的发展中进行特殊考虑。为了协助医生进行免疫受损的患者的指导,有关感染的治疗或(加强)疫苗接种的受益人,本综述旨在简明概述有关SARS-COV-2特定的细胞性免疫反应的当前知识。关于这些不同免疫功能低下的人群中有关病毒特异性细胞免疫力的最新发现可能会影响未来的临床决策。
在同种异体器官移植受体的同种异体移植监测中,使用供体衍生的无细胞无细胞DNA(DD-CFDNA)在等离子体中的液体活检已成为一种新型方法。尽管对技术进行了早期临床实施和分析验证,但仍缺乏对DD-CFDNA定量方法的直接比较。此外,关于尿液中DD-CFDNA的数据是稀缺的,到目前为止,基于高通量测序的方法尚未利用独特的分子识别剂(UMIS)来实现绝对DDDNNA量化。在肾脏和肝脏受体的尿液和血浆中比较了不同的DD-CFDNA定量方法:a)使用等位基因特异性检测的液滴数字PCR(DDPCR),可检测七个常见的HLA-DRB1等位基因和Y染色体; b)使用定制的QIASEQ DNA面板的高通量测序(HTS),该面板的靶向121个常见多态性; c)商业DD-CFDNA定量方法(Alloseq®CFDNA,Caredx)。dd-cfDNA定量为%dd-cfDNA,用于DDPCR和HTS,并使用UMIS作为供体副本。此外,在临床稳定的受体中比较了尿液和血浆中的相对和绝对DD-CFDNA水平。此处介绍的HTS方法表明,%dd-cfDNA与ddpcr(r 2 = 0.98)和Alloseq®CfDNA(R 2 = 0.99)之间的相关性很强,仅显示最小的比例偏见。绝对DD-CFDNA拷贝也与UMI和DDPCR之间的HTS之间也有很强的相关性(τ= 0.78),尽管具有相当比例的偏置(斜率:0.25; 95%-CI:0.19 - 0.26)。在30个稳定的肾脏移植受者中,尿液中的中值%dd-cfDNA为39.5%(四分位数,IQR:21.8 - 58.5%),含36.6份/μmol尿肌氨酸(IQR:18.4 - 109)和0.19%(IQR:0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01-01): 12.9)在体液之间没有任何相关性的等离子体中。来自八个稳定肝脏受体的血浆中的中位数%DD-CFDNA为2.2%(IQR:0.72 - 4.1%),使用120份/ml(IQR:85.0 - 138),中位DDDNNA拷贝/ml低于0.1,尿液中低于0.1。尿液和等离子体中DD-CFDNA绝对和相对定量的方法的第一个正面比较,支持与方法无关的%DD-CFDNA截止
价值哪些类型的群体是移植保险的好候选人?由所有行业,市政当局,工会,协会,政府实体和注册的Mewas组成的自资助团体,可能都是该报道的好候选人。为什么购买独立的移植政策而不是在现有医疗计划中保留移植福利更为实用?有几个理由购买独立政策,以确保与医疗计划分开的移植物:•移植是复杂的管理曝光,应由经验丰富的人员来处理,他们了解患者的需求以及临床要求,以确保最佳结果。•移植保险促进预算方面的可预测性而不是成本的可变性,从而有助于稳定集团的停止损失率。•由于较长的等待时间,固体器官移植具有超过计划合同年的趋势,导致不必要的变化具有免赔额,并且通常是停止损失载体的“激光”目标。•许多计划文件对移植覆盖范围有模糊的语言,这可能导致混乱甚至诉讼。
随着生活水平的提高,慢性病和终末期器官衰竭已成为人类的常见现象。器官移植成为对抗慢性病和终末期器官衰竭的希望之一。然而,可供移植的器官远远不能满足需求,导致严重的器官短缺危机。为了解决这个问题,研究人员将猪作为研究对象,因为猪作为异种移植供体具有许多优势。猪被认为是人类异种移植的理想器官供体,但将猪器官直接移植给人面临许多障碍,例如超急性排斥反应、急性体液异种移植排斥反应、凝血失调、炎症反应、凝血失调和内源性猪逆转录病毒感染。已经开发出许多转基因策略来克服这些障碍。本综述概述了用于异种移植的转基因猪的最新进展。未来基于基因工程为异种移植提供安全有效的器官和组织仍然是我们的目标。
人工智能 (AI) 是指用于完成通常需要人类智能才能完成的任务的计算机算法。典型的例子包括复杂的决策和图像或语音分析。人工智能在医疗保健领域的应用正在迅速发展,毫无疑问,它在实体器官移植领域具有巨大的潜力。在这篇综述中,我们概述了基于人工智能的实体器官移植方法。特别是,我们确定了可以通过人工智能促进的四个关键移植领域:器官分配和供体-受体配对、移植肿瘤学、实时免疫抑制方案和精准移植病理学。潜在的实现范围很广——从改进的分配算法、智能供体-受体匹配和免疫抑制的动态适应到移植病理学的自动分析。我们确信,我们正处于移植新数字时代的开端,人工智能有可能提高移植物和患者的存活率。本文让我们一窥人工智能创新如何为移植界塑造一个令人兴奋的未来。