(1)(Kokuken)日本科学技术局研究与发展战略中心,“战略建议:每个人的量子计算机”,2018年。 https:// wwwjst.go.jp/crds/pdf/2018/sp/crds-fy2018-sp-04.pdf(2)p.w.Shor,“用于量子计算的算法:离散日志和保理”,Proc第35届IEEE计算机科学序言研讨会,第124-134页,1994年。(3)L.K.Grover,“用于数据库搜索的快速量子机械算法”,第28 ACM计算理论座谈会论文集,第212-219页,1996年。(4)N。Kunihiro,“代理量计算机的计算时间的精确分析”,IEice Trans基础,第88-A卷,第105–111页,2005年。(5)M.A。nielsen和I.L.chuang,量子计算和量子信息,剑桥大学出版社,2000年。(6)A。Peruzzo,J。McClean,P。Shadbolt,M.-H周,P.J。Love,A。Aspuru-Guzik和J.L.O'Brien,“光子量子处理器上的变异特征值求解器”,《自然通信》,第5卷,第1期,2014年7月,第4213页(7)to奥利T.可逆计算,在:de bakker J.,van leeuwen J.(eds)自动机,语言和程序 - iCalp 1980,计算机Sci-Ence中的讲义,第85卷,Springer,柏林(8)Arxiv e-Prints,Quant-PH/9902 062,1999年2月。(9)K。Iwama,S。Yamashita和Y. Kambayashi,“设计基于CNOT的量子CUITS的跨形成规则”,设计自动化会议,第419-429-2002页,2002年。(10)Z. Sasanian和D.M.(12)M。Soeken,M。Roetteler,N。Wiebe和G.D. Micheli,“基于LUT的层次可逆逻辑Synthe-Sis”,IEEE TransMiller,“可逆和Quan-Tum电路优化:一种功能性方法”,《可使用的计算》第4个国际研讨会(RC 2012),第112-124页,2013年。((11)A。Mishchenko和M. Perkowski,“快速的启发式启发式最小化 - 独家及产品或产品”,第五届国际式Reed-Muller Workshop,pp.242–250,2001。计算。集成。电路系统,第38卷,第9期,第1675–1688页,2019年。((13)E。Souma和S. Yamashita,“同时分解许多MPMCT大门时,减少T计数”,第50届国际多重逻辑国际研讨会(IS- MVL 2020),第22-22-27页,11月2020年,((14)X. Zhou,D.W。 Leung和I.L.Chuang,“量子逻辑门结构的方法论”,物理。 修订版 A,第62卷,052316,2000年10月。 ((15)A。Barenco,C.H。 Bennett,R。Cleve,D.P。 Divincenzo,Chuang,“量子逻辑门结构的方法论”,物理。修订版A,第62卷,052316,2000年10月。((15)A。Barenco,C.H。Bennett,R。Cleve,D.P。 Divincenzo,Bennett,R。Cleve,D.P。Divincenzo,
摘要。操作员是指挥和控制系统中的主要漏洞来源之一;例如,79% 的航空致命事故归因于“人为错误”。根据 Avizienis 等人的故障分类系统,操作时的人为错误可以描述为操作员在与指挥和控制系统交互时未能提供服务。然而,之前很少有研究尝试将导致操作员处于错误模式的多种不同故障来源区分开来。本文提出了对 Avizienis 等人分类法的扩展,以便更全面地考虑人类操作员,明确导致操作员偏离正确服务交付的故障、错误状态和故障。我们的新分类法提高了对故障的理解和识别,并提供了关于可以避免或修复人为服务故障的方法的系统见解。我们提供了来自航空和其他领域的影响操作员和容错机制的故障的多个具体示例,涵盖了人机交互循环操作员侧的关键方面。
意识在大脑中如何产生对临床决策具有重要意义。我们总结了意识研究的最新发现,为临床医生提供了一个工具包,以评估意识缺陷并预测脑损伤后的结果。我们重点介绍了常见的意识障碍,然后介绍了目前用于诊断这些障碍的临床量表。我们回顾了描述丘脑皮质系统和脑干唤醒核在支持意识和唤醒方面的作用的最新证据,并讨论了各种神经影像学研究在评估意识障碍方面的效用。我们探索了意识机械模型的最新理论进展,重点关注两个主要模型,即全局神经元工作空间和整合信息理论,并回顾了有争议的领域。最后,我们考虑了最近的研究对临床神经外科医生日常决策的潜在影响,并提出了一个简单的“三振出局”模型来推断丘脑皮质系统的完整性,这可以指导预测恢复意识。
为了充分理解基因功能,在某个时候,有必要研究完整生物体的影响。在1980年代后期创造了第一只淘汰老鼠的创建引起了整合生理学领域的革命,这种革命一直持续到今天。在选择遗传修饰策略时,有许多复杂的选择,其中一些将在本综述中涉及,但主要重点是突出由于体内心脏表型的解释而引起的潜在问题和陷阱。作为典范,我们将仔细检查心脏能量学领域,并尝试了解肌酸激酶(CK)能量缓冲和运输系统在完整生物体中的作用。这个故事强调了遗传背景,性别和年龄的混杂影响,以及根据滥交蛋白和代谢冗余而解释淘汰模型的困难。它将考虑转基因过表达的剂量依赖性效应和意外后果,以及在体内表型技术的背景下需要进行实验性严格的结果。本次审查不仅将使心脏能量学领域具有清晰度,而且还将帮助非专家评估和批判性地评估由体内遗传修饰引起的数据。
作者:Vaclav Kremen 1,2*、Vladimir Sladky 1,3*、Filip Mivalt 1,4*、Nicholas M. Gregg 1、Irena Balzekas 1,5、Victoria Marks 1,5、Benjamin H. Brinkmann 1,5、Brian Nils Lundstrom 1、Jie Cui 1、Erik K. St Louis 6、Paul Croarkin 7、Eva C Alden 7、Julie Fields 7、Karla Crockett 1、Jindrich Adolf 4、Jordan Bilderbeek 5、Dora Hermes 5、Steven Messina 8、Kai J. Miller 9、Jamie Van Gompel 9、Timothy Denison 10、Gregory A. Worrell 1,5 1 梅奥诊所神经内科生物电子神经生理学和工程实验室,明尼苏达州罗切斯特 55905 2 捷克信息学、机器人学和控制论研究所,捷克技术大学,16000 布拉格,捷克共和国,3 捷克技术大学生物医学工程学院,16000 布拉格,捷克共和国,4 布尔诺理工大学电气工程与通信学院生物医学工程系,61600 布尔诺,捷克共和国。 5 梅奥诊所生理学和生物医学工程系,明尼苏达州罗切斯特 55905,6 梅奥诊所睡眠医学中心,神经病学和医学系,睡眠神经病学和肺部和重症监护医学分部,明尼苏达州罗切斯特 55905 7 精神病学和心理学系 8 梅奥诊所放射学系,明尼苏达州罗切斯特 55905 9 梅奥诊所神经外科系,明尼苏达州罗切斯特 55905 10 牛津大学医学研究委员会脑网络动力学部工程科学系,牛津 OX3 7DQ,英国 摘要 (218 字)颞叶癫痫 (TLE) 是一种常见的神经系统疾病,其特征是复发性局灶性癫痫发作。这些癫痫发作通常起源于内侧颞叶边缘网络和海马旁新皮质。 TLE 患者经常会经历与记忆、情绪和睡眠 (MMS) 相关的合并症。针对丘脑前核的深部脑刺激 (ANT-DBS) 是一种减少 TLE 癫痫发作的有效疗法,但改善癫痫发作和 MMS 合并症的最佳刺激参数仍不清楚。我们开发了一个神经技术平台,用于在 ANT-DBS 期间跟踪癫痫发作和 MMS,以解决这一临床差距。该平台支持大脑传感刺激植入物、紧凑型移动设备和基于云的数据存储、查看和计算环境之间的双向数据流。机器学习算法提供了准确、无偏见的癫痫发作、发作间期癫痫样尖峰 (IES) 和睡眠清醒脑状态目录,以告知 ANT-DBS。远程管理的记忆和情绪评估用于客观、密集地采样对 ANT-DBS 的认知和行为反应。在患有近中性 TLE 的参与者中,我们评估了低频与高频 ANT-DBS 的疗效。低频和高频 ANT-DBS 均能减少报告的癫痫发作。但连续低频 ANT-DBS 可显著减少电图癫痫发作和 IES,以及与高频 ANT-DBS 相比更好的睡眠和言语记忆。这些结果凸显了同步大脑感知和行为跟踪在优化神经调节疗法方面的潜力。
当盐、湿气或腐蚀性液体(如特种液压油)与连接件和电缆接触时,就会产生腐蚀。产生的氧化物会降低导电性,从而增加导电连接器的电阻。因此,如果系统发生故障,安全断路器将无法运行或运行缓慢,甚至可能导致火灾。腐蚀的结构连接在遭受雷击时会造成巨大损坏。不幸的是,这种腐蚀形式并不总是肉眼可见的。